
Subject: Re: [PATCH v5 04/14] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 18 Oct 2012 09:02:50 GMT
View Forum Message <> Reply to Message

On 10/18/2012 02:08 AM, David Rientjes wrote:
> On Tue, 16 Oct 2012, Glauber Costa wrote:
>
>> This patch adds the basic infrastructure for the accounting of kernel
>> memory. To control that, the following files are created:
>>
>> * memory.kmem.usage_in_bytes
>> * memory.kmem.limit_in_bytes
>> * memory.kmem.failcnt
>> * memory.kmem.max_usage_in_bytes
>>
>> They have the same meaning of their user memory counterparts. They
>> reflect the state of the "kmem" res_counter.
>>
>> Per cgroup kmem memory accounting is not enabled until a limit is set
>> for the group. Once the limit is set the accounting cannot be disabled
>> for that group. This means that after the patch is applied, no
>> behavioral changes exists for whoever is still using memcg to control
>> their memory usage, until memory.kmem.limit_in_bytes is set for the
>> first time.
>>
>> We always account to both user and kernel resource_counters. This
>> effectively means that an independent kernel limit is in place when the
>> limit is set to a lower value than the user memory. A equal or higher
>> value means that the user limit will always hit first, meaning that kmem
>> is effectively unlimited.
>>
>> People who want to track kernel memory but not limit it, can set this
>> limit to a very high number (like RESOURCE_MAX - 1page - that no one
>> will ever hit, or equal to the user memory)
>>
>> [v4: make kmem files part of the main array;
>> do not allow limit to be set for non-empty cgroups]
>> [v5: cosmetic changes]
>>
>> Signed-off-by: Glauber Costa <glommer@parallels.com>
>> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
>> CC: Michal Hocko <mhocko@suse.cz>
>> CC: Johannes Weiner <hannes@cmpxchg.org>
>> CC: Tejun Heo <tj@kernel.org>
>> ---
>> mm/memcontrol.c | 116
+++-
>> 1 file changed, 115 insertions(+), 1 deletion(-)

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11211&goto=48459#msg_48459
https://new-forum.openvz.org/index.php?t=post&reply_to=48459
https://new-forum.openvz.org/index.php

>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index 71d259e..30eafeb 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
>> @@ -266,6 +266,10 @@ struct mem_cgroup {
>> 	};
>>
>> 	/*
>> +	 * the counter to account for kernel memory usage.
>> +	 */
>> +	struct res_counter kmem;
>> +	/*
>> 	 * Per cgroup active and inactive list, similar to the
>> 	 * per zone LRU lists.
>> 	 */
>> @@ -280,6 +284,7 @@ struct mem_cgroup {
>> 	 * Should the accounting and control be hierarchical, per subtree?
>> 	 */
>> 	bool use_hierarchy;
>> +	unsigned long kmem_accounted; /* See KMEM_ACCOUNTED_*, below */
>
> I think this should be named kmem_account_flags or kmem_flags, otherwise
> it appears that this is the actual account.
>

ok.

>>
>> 	bool		oom_lock;
>> 	atomic_t	under_oom;
>> @@ -332,6 +337,20 @@ struct mem_cgroup {
>> #endif
>> };
>>
>> +/* internal only representation about the status of kmem accounting. */
>> +enum {
>> +	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
>> +};
>> +
>> +#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)
>> +
>> +#ifdef CONFIG_MEMCG_KMEM
>
> memcg->kmem_accounted isn't only defined for this configuration, so would
> it be simpler to define this unconditionally?
>
The functions that manipulate those bits are. Reason being they are only

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

used for #CONFIG_KMEMCG_KMEM, and gcc will complain about
defined-but-not-used static functions.

>> +static void memcg_kmem_set_active(struct mem_cgroup *memcg)
>
> inline?
>
ok.

>> +{
>> +	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_accounted);
>> +}
>> +#endif
>> +
>> /* Stuffs for move charges at task migration. */
>> /*
>> * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
>> @@ -390,6 +409,7 @@ enum res_type {
>> 	_MEM,
>> 	_MEMSWAP,
>> 	_OOM_TYPE,
>> +	_KMEM,
>> };
>>
>> #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
>> @@ -1433,6 +1453,10 @@ done:
>> 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
>> 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
>> 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
>> +	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
>> +		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
>> +		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
>> +		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
>> }
>>
>> /*
>> @@ -3940,6 +3964,9 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
>> 		else
>> 			val = res_counter_read_u64(&memcg->memsw, name);
>> 		break;
>> +	case _KMEM:
>> +		val = res_counter_read_u64(&memcg->kmem, name);
>> +		break;
>> 	default:
>> 		BUG();
>> 	}
>> @@ -3947,6 +3974,57 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

*cft,
>> 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
>> 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
>> }
>> +
>> +static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
>> +{
>> +	int ret = -EINVAL;
>> +#ifdef CONFIG_MEMCG_KMEM
>> +	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
>> +	/*
>> +	 * For simplicity, we won't allow this to be disabled. It also can't
>> +	 * be changed if the cgroup has children already, or if tasks had
>> +	 * already joined.
>> +	 *
>> +	 * If tasks join before we set the limit, a person looking at
>> +	 * kmem.usage_in_bytes will have no way to determine when it took
>> +	 * place, which makes the value quite meaningless.
>> +	 *
>> +	 * After it first became limited, changes in the value of the limit are
>> +	 * of course permitted.
>> +	 *
>> +	 * Taking the cgroup_lock is really offensive, but it is so far the only
>> +	 * way to guarantee that no children will appear. There are plenty of
>> +	 * other offenders, and they should all go away. Fine grained locking
>> +	 * is probably the way to go here. When we are fully hierarchical, we
>> +	 * can also get rid of the use_hierarchy check.
>
> Not sure it's so offensive, it's a pretty standard way of ensuring that
> cont->children doesn't get manipulated in a race.
>

Yes, it is. But Tejun is currently in a cruzade (in which I pretty much
back him up) to get rid of all uses of the cgroup_lock outside cgroup.c.

That is the offensive part. But it is also how things are done in memcg
right now, and there is nothing fundamentally different in this one.
Whatever lands in the remaining offenders, can land in here.

>> +	 */
>> +	cgroup_lock();
>> +	mutex_lock(&set_limit_mutex);
>> +	if (!memcg->kmem_accounted && val != RESOURCE_MAX) {
>> +		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
>> +						!list_empty(&cont->children))) {
>> +			ret = -EBUSY;
>> +			goto out;

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> +		}
>> +		ret = res_counter_set_limit(&memcg->kmem, val);
>> +		VM_BUG_ON(ret);
>> +
>> +		memcg_kmem_set_active(memcg);
>> +	} else
>> +		ret = res_counter_set_limit(&memcg->kmem, val);
>> +out:
>> +	mutex_unlock(&set_limit_mutex);
>> +	cgroup_unlock();
>> +#endif
>> +	return ret;
>> +}
>> +
>> +static void memcg_propagate_kmem(struct mem_cgroup *memcg,
>> +				 struct mem_cgroup *parent)
>> +{
>> +	memcg->kmem_accounted = parent->kmem_accounted;
>> +}
>> +
>> /*
>> * The user of this function is...
>> * RES_LIMIT.
>> @@ -3978,8 +4056,12 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
>> 			break;
>> 		if (type == _MEM)
>> 			ret = mem_cgroup_resize_limit(memcg, val);
>> -		else
>> +		else if (type == _MEMSWAP)
>> 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
>> +		else if (type == _KMEM)
>> +			ret = memcg_update_kmem_limit(cont, val);
>> +		else
>> +			return -EINVAL;
>
> I like how this is done in a maintainable way to ensure no other types can
> inadvertently update the memsw limit as it was previously written. All
> other returns of -EINVAL just cause the switch statement to break, though,
> rather than return directly.
>
>> 		break;
>> 	case RES_SOFT_LIMIT:
>> 		ret = res_counter_memparse_write_strategy(buffer, &val);
>> @@ -4045,12 +4127,16 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)
>> 	case RES_MAX_USAGE:
>> 		if (type == _MEM)
>> 			res_counter_reset_max(&memcg->res);

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> +		else if (type == _KMEM)
>> +			res_counter_reset_max(&memcg->kmem);
>
> Could this be written in the same way above, i.e. check _MEMSWAP to pass
> memcg->memsw, _KMEM for memcg->kmem, etc?
>
>> 		else
>> 			res_counter_reset_max(&memcg->memsw);
>> 		break;
>> 	case RES_FAILCNT:
>> 		if (type == _MEM)
>> 			res_counter_reset_failcnt(&memcg->res);
>> +		else if (type == _KMEM)
>> +			res_counter_reset_failcnt(&memcg->kmem);
>
> Same.
>
Done.

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

