Subject: Re: [PATCH v5 04/14] kmem accounting basic infrastructure
Posted by David Rientjes on Wed, 17 Oct 2012 22:08:04 GMT

View Forum Message <> Reply to Message

On Tue, 16 Oct 2012, Glauber Costa wrote:

> This patch adds the basic infrastructure for the accounting of kernel

> memory. To control that, the following files are created:

>

> * memory.kmem.usage_in_bytes

> * memory.kmem.limit_in_bytes

> * memory.kmem.failcnt

> * memory.kmem.max_usage_in_bytes

>

> They have the same meaning of their user memory counterparts. They
> reflect the state of the "kmem" res_counter.

>

> Per cgroup kmem memory accounting is not enabled until a limit is set
> for the group. Once the limit is set the accounting cannot be disabled
> for that group. This means that after the patch is applied, no

> behavioral changes exists for whoever is still using memcg to control
> their memory usage, until memory.kmem.limit_in_bytes is set for the
> first time.

>

> We always account to both user and kernel resource_counters. This

> effectively means that an independent kernel limit is in place when the
> limit is set to a lower value than the user memory. A equal or higher

> value means that the user limit will always hit first, meaning that kmem
> is effectively unlimited.

>

> People who want to track kernel memory but not limit it, can set this

> limit to a very high number (like RESOURCE_MAX - 1page - that no one
> will ever hit, or equal to the user memory)

>

> [v4: make kmem files part of the main array;

> do not allow limit to be set for non-empty cgroups]

> [v5: cosmetic changes]

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Tejun Heo <tj@kernel.org>

> -

> mm/memcontrol.c | 116

S L L L L o L o
> 1 file changed, 115 insertions(+), 1 deletion(-)

>

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=11211&goto=48435#msg_48435
https://new-forum.openvz.org/index.php?t=post&reply_to=48435
https://new-forum.openvz.org/index.php

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index 71d259e..30eafeb 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -266,6 +266,10 @@ struct mem_cgroup {

>}

>

> [*

>+ * the counter to account for kernel memory usage.

>+ %

> + struct res_counter kmem;

>+ [*

> * Per cgroup active and inactive list, similar to the

> *per zone LRU lists.

> %

> @@ -280,6 +284,7 @@ struct mem_cgroup {

> * Should the accounting and control be hierarchical, per subtree?
> %

> bool use_hierarchy;

> + unsigned long kmem_accounted; /* See KMEM_ACCOUNTED _*, below */

| think this should be named kmem_account_flags or kmem_flags, otherwise
it appears that this is the actual account.

>

> bool oom_lock;

> atomic_t under_oom;

> @@ -332,6 +337,20 @@ struct mem_cgroup {

> #endif

>}

>

> +/* internal only representation about the status of kmem accounting. */

> +enum {

>+ KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
> +};

>+

> +#tdefine KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)
>+

> +#ifdef CONFIG_MEMCG_KMEM

memcg->kmem_accounted isn't only defined for this configuration, so would
it be simpler to define this unconditionally?

> +static void memcg_kmem_set_active(struct mem_cgroup *memcg)
inline?

> +{

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_accounted);
> +}

> +#endif

>+

> [* Stuffs for move charges at task migration. */

> [*

> *Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
> @@ -390,6 +409,7 @@ enum res_type {

> MEM,

> MEMSWAP,

> OOM_TYPE,

>+ KMEM,

>}

>

> #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))

> @@ -1433,6 +1453,10 @@ done:

> res_counter_read u64(&memcg->memsw, RES USAGE) >> 10,

> res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,

> res_counter_read_u64(&memcg->memsw, RES_FAILCNT));

> + printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n”,
>+ res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,

>+ res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,

>+ res_counter_read_u64(&memcg->kmem, RES_FAILCNT));

>}

>

> [*

> @@ -3940,6 +3964,9 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,

> else
> val =res_counter_read_u64(&memcg->memsw, name);
> break;

> + case _KMEM:

>+ val =res_counter_read_u64(&memcg->kmem, name);

>+ break;

> default:

> BUG();

>}

> @@ -3947,6 +3974,57 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,

> |len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);

> return simple_read_from_buffer(buf, nbytes, ppos, str, len);

>}

>+

> +static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
> +{

> +int ret = -EINVAL;

> +#ifdef CONFIG_ MEMCG_KMEM

> + struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>+ [*

>+ * For simplicity, we won't allow this to be disabled. It also can't

>+ * pe changed if the cgroup has children already, or if tasks had

>+ * already joined.

>+ *

>+ * |f tasks join before we set the limit, a person looking at

>+ * kmem.usage_in_bytes will have no way to determine when it took
>+ * place, which makes the value quite meaningless.

>+ *

>+ * After it first became limited, changes in the value of the limit are
>+ * of course permitted.

>+ *

>+ * Taking the cgroup_lock is really offensive, but it is so far the only
>+ * way to guarantee that no children will appear. There are plenty of
>+ * other offenders, and they should all go away. Fine grained locking
>+ * s probably the way to go here. When we are fully hierarchical, we
>+ * can also get rid of the use_hierarchy check.

Not sure it's so offensive, it's a pretty standard way of ensuring that
cont->children doesn't get manipulated in a race.

>+ ¥

> + cgroup_lock();

> + mutex_lock(&set_limit_mutex);

> + if (Imemcg->kmem_accounted && val '= RESOURCE_MAX) {
>+ if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
>+ llist_empty(&cont->children))) {

>+ ret =-EBUSY;

>+ goto out;

>+ }

>+ ret = res_counter_set_limit(&memcg->kmem, val);

>+ VM_BUG_ON(ret);

>+

>+ memcg_kmem_set_active(memcg);

>+ }else

>+ ret =res_counter_set_limit(&memcg->kmem, val);
> +out:

> + mutex_unlock(&set_limit_mutex);

> + cgroup_unlock();

> +#endif

> + return ret;

> +}

>+

> +static void memcg_propagate_kmem(struct mem_cgroup *memcg,
>+ struct mem_cgroup *parent)

> +{

> + memcg->kmem_accounted = parent->kmem_accounted;
> +}

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +
> [*

> * The user of this function is...

> *RES_LIMIT.

> @@ -3978,8 +4056,12 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
> Dbreak;

> if (type == _MEM)

> ret = mem_cgroup_resize_limit(memcg, val);

> - else

>+ else if (type == _MEMSWAP)

> ret = mem_cgroup_resize_memsw_limit(memcg, val);

>+ else if (type == _KMEM)

>+ ret = memcg_update_kmem_limit(cont, val);

>+ else

>+ return -EINVAL;

| like how this is done in a maintainable way to ensure no other types can
inadvertently update the memsw limit as it was previously written. All
other returns of -EINVAL just cause the switch statement to break, though,
rather than return directly.

> break;

> case RES_SOFT_LIMIT:

> ret =res_counter_memparse_write_strategy(buffer, &val);

> @@ -4045,12 +4127,16 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)

> case RES_MAX_ USAGE:

> if (type == _MEM)

> res_counter_reset_max(&memcg->res);

>+ else if (type == _KMEM)

>+ res_counter_reset_max(&memcg->kmem);

Could this be written in the same way above, i.e. check _MEMSWAP to pass
memcg->memsw, KMEM for memcg->kmem, etc?

else
res_counter_reset_max(&memcg->memsw);
break;

case RES_FAILCNT:

if (type == _MEM)

> res_counter_reset_failcnt(&memcg->res);

>+ else if (type == _KMEM)

>+ res_counter_reset_failcnt(&memcg->kmem);

VVVVYV

Same.

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

