
Subject: Re: [PATCH v4 06/14] memcg: kmem controller infrastructure
Posted by KAMEZAWA Hiroyuki on Tue, 16 Oct 2012 08:00:03 GMT
View Forum Message <> Reply to Message

(2012/10/12 18:13), Glauber Costa wrote:
> On 10/12/2012 12:57 PM, Michal Hocko wrote:
>> On Fri 12-10-12 12:44:57, Glauber Costa wrote:
>>> On 10/12/2012 12:39 PM, Michal Hocko wrote:
>>>> On Fri 12-10-12 11:45:46, Glauber Costa wrote:
>>>>> On 10/11/2012 04:42 PM, Michal Hocko wrote:
>>>>>> On Mon 08-10-12 14:06:12, Glauber Costa wrote:
>>>> [...]
>>>>>>> +	/*
>>>>>>> +	 * Conditions under which we can wait for the oom_killer.
>>>>>>> +	 * __GFP_NORETRY should be masked by __mem_cgroup_try_charge,
>>>>>>> +	 * but there is no harm in being explicit here
>>>>>>> +	 */
>>>>>>> +	may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);
>>>>>>
>>>>>> Well we _have to_ check __GFP_NORETRY here because if we don't then we
>>>>>> can end up in OOM. mem_cgroup_do_charge returns CHARGE_NOMEM for
>>>>>> __GFP_NORETRY (without doing any reclaim) and of oom==true we decrement
>>>>>> oom retries counter and eventually hit OOM killer. So the comment is
>>>>>> misleading.
>>>>>
>>>>> I will update. What i understood from your last message is that we don't
>>>>> really need to, because try_charge will do it.
>>>>
>>>> IIRC I just said it couldn't happen before because migration doesn't go
>>>> through charge and thp disable oom by default.
>>>>
>>>
>>> I had it changed to:
>>>
>>> /*
>>> * Conditions under which we can wait for the oom_killer.
>>> * We have to be able to wait, but also, if we can't retry,
>>> * we obviously shouldn't go mess with oom.
>>> */
>>> may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);
>>
>> OK
>>
>>>
>>>>>>> +
>>>>>>> +	_memcg = memcg;
>>>>>>> +	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
>>>>>>> +				 &_memcg, may_oom);

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=11173&goto=48383#msg_48383
https://new-forum.openvz.org/index.php?t=post&reply_to=48383
https://new-forum.openvz.org/index.php

>>>>>>> +
>>>>>>> +	if (!ret) {
>>>>>>> +		ret = res_counter_charge(&memcg->kmem, size, &fail_res);
>>>>>>
>>>>>> Now that I'm thinking about the charging ordering we should charge the
>>>>>> kmem first because we would like to hit kmem limit before we hit u+k
>>>>>> limit, don't we.
>>>>>> Say that you have kmem limit 10M and the total limit 50M. Current `u'
>>>>>> would be 40M and this charge would cause kmem to hit the `k' limit. I
>>>>>> think we should fail to charge kmem before we go to u+k and potentially
>>>>>> reclaim/oom.
>>>>>> Or has this been alredy discussed and I just do not remember?
>>>>>>
>>>>> This has never been discussed as far as I remember. We charged u first
>>>>> since day0, and you are so far the first one to raise it...
>>>>>
>>>>> One of the things in favor of charging 'u' first is that
>>>>> mem_cgroup_try_charge is already equipped to make a lot of decisions,
>>>>> like when to allow reclaim, when to bypass charges, and it would be good
>>>>> if we can reuse all that.
>>>>
>>>> Hmm, I think that we should prevent from those decisions if kmem charge
>>>> would fail anyway (especially now when we do not have targeted slab
>>>> reclaim).
>>>>
>>>
>>> Let's revisit this discussion when we do have targeted reclaim. For now,
>>> I'll agree that charging kmem first would be acceptable.
>>>
>>> This will only make a difference when K < U anyway.
>>
>> Yes and it should work as advertised (aka hit the k limit first).
>>
> Just so we don't ping-pong in another submission:
>
> I changed memcontrol.h's memcg_kmem_newpage_charge to include:
>
> /* If the test is dying, just let it go. */
> if (unlikely(test_thread_flag(TIF_MEMDIE)
> || fatal_signal_pending(current)))
> return true;
>
>
> I'm also attaching the proposed code in memcontrol.c
>
> +static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
> +{
> +	struct res_counter *fail_res;

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	struct mem_cgroup *_memcg;
> +	int ret = 0;
> +	bool may_oom;
> +
> +	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
> +	if (ret)
> +		return ret;
> +
> +	/*
> +	 * Conditions under which we can wait for the oom_killer.
> +	 * We have to be able to wait, but also, if we can't retry,
> +	 * we obviously shouldn't go mess with oom.
> +	 */
> +	may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);
> +
> +	_memcg = memcg;
> +	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
> +				 &_memcg, may_oom);
> +
> +	if (ret == -EINTR) {
> +		/*
> +		 * __mem_cgroup_try_charge() chosed to bypass to root due to
> +		 * OOM kill or fatal signal. Since our only options are to
> +		 * either fail the allocation or charge it to this cgroup, do
> +		 * it as a temporary condition. But we can't fail. From a
> +		 * kmem/slab perspective, the cache has already been selected,
> +		 * by mem_cgroup_get_kmem_cache(), so it is too late to change
> +		 * our minds. This condition will only trigger if the task
> +		 * entered memcg_charge_kmem in a sane state, but was
> +		 * OOM-killed. during __mem_cgroup_try_charge. Tasks that are
> +		 * already dying when the allocation triggers should have been
> +		 * already directed to the root cgroup.
> +		 */
> +		res_counter_charge_nofail(&memcg->res, size, &fail_res);
> +		if (do_swap_account)
> +			res_counter_charge_nofail(&memcg->memsw, size,
> +						 &fail_res);
> +		ret = 0;
> +	} else if (ret)
> +		res_counter_uncharge(&memcg->kmem, size);
> +
> +	return ret;
> +}

seems ok to me. but we'll need a patch to hide the usage > limit situation from
users.

Thanks,

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-Kame

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

