
Subject: Re: [PATCH v4 06/14] memcg: kmem controller infrastructure
Posted by Glauber Costa on Fri, 12 Oct 2012 09:13:04 GMT
View Forum Message <> Reply to Message

On 10/12/2012 12:57 PM, Michal Hocko wrote:
> On Fri 12-10-12 12:44:57, Glauber Costa wrote:
>> On 10/12/2012 12:39 PM, Michal Hocko wrote:
>>> On Fri 12-10-12 11:45:46, Glauber Costa wrote:
>>>> On 10/11/2012 04:42 PM, Michal Hocko wrote:
>>>>> On Mon 08-10-12 14:06:12, Glauber Costa wrote:
>>> [...]
>>>>>> +	/*
>>>>>> +	 * Conditions under which we can wait for the oom_killer.
>>>>>> +	 * __GFP_NORETRY should be masked by __mem_cgroup_try_charge,
>>>>>> +	 * but there is no harm in being explicit here
>>>>>> +	 */
>>>>>> +	may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);
>>>>>
>>>>> Well we _have to_ check __GFP_NORETRY here because if we don't then we
>>>>> can end up in OOM. mem_cgroup_do_charge returns CHARGE_NOMEM for
>>>>> __GFP_NORETRY (without doing any reclaim) and of oom==true we decrement
>>>>> oom retries counter and eventually hit OOM killer. So the comment is
>>>>> misleading.
>>>>
>>>> I will update. What i understood from your last message is that we don't
>>>> really need to, because try_charge will do it.
>>>
>>> IIRC I just said it couldn't happen before because migration doesn't go
>>> through charge and thp disable oom by default.
>>>
>>
>> I had it changed to:
>>
>> /*
>> * Conditions under which we can wait for the oom_killer.
>> * We have to be able to wait, but also, if we can't retry,
>> * we obviously shouldn't go mess with oom.
>> */
>> may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);
>
> OK
>
>>
>>>>>> +
>>>>>> +	_memcg = memcg;
>>>>>> +	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
>>>>>> +				 &_memcg, may_oom);
>>>>>> +

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11173&goto=48306#msg_48306
https://new-forum.openvz.org/index.php?t=post&reply_to=48306
https://new-forum.openvz.org/index.php

>>>>>> +	if (!ret) {
>>>>>> +		ret = res_counter_charge(&memcg->kmem, size, &fail_res);
>>>>>
>>>>> Now that I'm thinking about the charging ordering we should charge the
>>>>> kmem first because we would like to hit kmem limit before we hit u+k
>>>>> limit, don't we.
>>>>> Say that you have kmem limit 10M and the total limit 50M. Current `u'
>>>>> would be 40M and this charge would cause kmem to hit the `k' limit. I
>>>>> think we should fail to charge kmem before we go to u+k and potentially
>>>>> reclaim/oom.
>>>>> Or has this been alredy discussed and I just do not remember?
>>>>>
>>>> This has never been discussed as far as I remember. We charged u first
>>>> since day0, and you are so far the first one to raise it...
>>>>
>>>> One of the things in favor of charging 'u' first is that
>>>> mem_cgroup_try_charge is already equipped to make a lot of decisions,
>>>> like when to allow reclaim, when to bypass charges, and it would be good
>>>> if we can reuse all that.
>>>
>>> Hmm, I think that we should prevent from those decisions if kmem charge
>>> would fail anyway (especially now when we do not have targeted slab
>>> reclaim).
>>>
>>
>> Let's revisit this discussion when we do have targeted reclaim. For now,
>> I'll agree that charging kmem first would be acceptable.
>>
>> This will only make a difference when K < U anyway.
>
> Yes and it should work as advertised (aka hit the k limit first).
>
Just so we don't ping-pong in another submission:

I changed memcontrol.h's memcg_kmem_newpage_charge to include:

 /* If the test is dying, just let it go. */
 if (unlikely(test_thread_flag(TIF_MEMDIE)
 || fatal_signal_pending(current)))
 return true;

I'm also attaching the proposed code in memcontrol.c

File Attachments
1) chch.patch, downloaded 469 times

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=1051
https://new-forum.openvz.org/index.php

