Subject: Re: [PATCH v4 06/14] memcg: kmem controller infrastructure
Posted by Glauber Costa on Fri, 12 Oct 2012 09:13:04 GMT

View Forum Message <> Reply to Message

On 10/12/2012 12:57 PM, Michal Hocko wrote:

> On Fri 12-10-12 12:44:57, Glauber Costa wrote:

>> 0On 10/12/2012 12:39 PM, Michal Hocko wrote:

>>> On Fri 12-10-12 11:45:46, Glauber Costa wrote:

>>>> 0n 10/11/2012 04:42 PM, Michal Hocko wrote:

>>>>> 0On Mon 08-10-12 14:06:12, Glauber Costa wrote:

>>> [..]

>>>>>> + [*

>>>>>> + * Conditions under which we can wait for the oom_Kkiller.

>>>>>>+ * GFP_NORETRY should be masked by __mem_cgroup_try charge,
>>>>>> + * put there is no harm in being explicit here

>>>>>> + %

>>>>>>+ may_oom = (gfp & _ GFP_WAIT) && !(gfp & _ GFP_NORETRY);

>>5>>>

>>>>> Well we have to_ check _ GFP_NORETRY here because if we don't then we
>>>>> can end up in OOM. mem_cgroup_do_charge returns CHARGE_NOMEM for
>>>>> GFP_NORETRY (without doing any reclaim) and of oom==true we decrement
>>>>> oom retries counter and eventually hit OOM Kkiller. So the comment is

>>>>> misleading.

>>>>

>>>> | will update. What i understood from your last message is that we don't

>>>> really need to, because try_charge will do it.

>>>

>>> |IRC | just said it couldn't happen before because migration doesn't go

>>> through charge and thp disable oom by default.

>>>
>>

>> | had it changed to:

>>

>> /*

>> * Conditions under which we can wait for the oom_killer.
>> * We have to be able to wait, but also, if we can't retry,
>> * we obviously shouldn't go mess with oom.

>> */

>> may_oom = (gfp & _ GFP_WAIT) && !(gfp & __ GFP_NORETRY);

>

> OK

>

>>

>>>>5>> +

>>>>>>+ _memcg = memcg,

>>>>>> +ret = ___mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
>>>>>> + & _memcg, may_oom);

>S>5>>5>> +

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11173&goto=48306#msg_48306
https://new-forum.openvz.org/index.php?t=post&reply_to=48306
https://new-forum.openvz.org/index.php

>>>>>> + if (Iret) {

>>>>>> + ret = res_counter_charge(&memcg->kmem, size, &fail_res);

>>>>>

>>>>> Now that I'm thinking about the charging ordering we should charge the
>>>>> kmem first because we would like to hit kmem limit before we hit u+k
>>>>> [imit, don't we.

>>>>> Say that you have kmem limit 20M and the total limit 50M. Current "u'
>>>>> would be 40M and this charge would cause kmem to hit the "K' limit. |
>>>>> think we should fail to charge kmem before we go to u+k and potentially
>>>>> reclaim/oom.

>>>>> Or has this been alredy discussed and | just do not remember?

>>>>>

>>>> This has never been discussed as far as | remember. We charged u first
>>>> since day0, and you are so far the first one to raise it...

>>>>

>>>> One of the things in favor of charging 'u’ first is that

>>>> mem_cgroup_try charge is already equipped to make a lot of decisions,
>>>> |ike when to allow reclaim, when to bypass charges, and it would be good
>>>> if we can reuse all that.

>>>

>>> Hmm, | think that we should prevent from those decisions if kmem charge
>>> would fail anyway (especially now when we do not have targeted slab
>>> reclaim).

>>>

>>

>> Let's revisit this discussion when we do have targeted reclaim. For now,

>> ['ll agree that charging kmem first would be acceptable.

>>

>> This will only make a difference when K < U anyway.

>

> Yes and it should work as advertised (aka hit the k limit first).

>

Just so we don't ping-pong in another submission:

| changed memcontrol.h's memcg_kmem_newpage_charge to include:
[* If the test is dying, just let it go. */
if (unlikely(test_thread_flag(TIF_MEMDIE)
|| fatal_signal_pending(current)))
return true;

I'm also attaching the proposed code in memcontrol.c

File Attachnents

1) chch. patch, downl oaded 463 ti nes

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=1051
https://new-forum.openvz.org/index.php

