
Subject: Re: [PATCH v4 12/14] execute the whole memcg freeing in free_worker
Posted by Michal Hocko on Thu, 11 Oct 2012 14:21:27 GMT
View Forum Message <> Reply to Message

On Mon 08-10-12 14:06:18, Glauber Costa wrote:
> A lot of the initialization we do in mem_cgroup_create() is done with
> softirqs enabled. This include grabbing a css id, which holds
> &ss->id_lock->rlock, and the per-zone trees, which holds
> rtpz->lock->rlock. All of those signal to the lockdep mechanism that
> those locks can be used in SOFTIRQ-ON-W context. This means that the
> freeing of memcg structure must happen in a compatible context,
> otherwise we'll get a deadlock, like the one bellow, caught by lockdep:
>
> [<ffffffff81103095>] free_accounted_pages+0x47/0x4c
> [<ffffffff81047f90>] free_task+0x31/0x5c
> [<ffffffff8104807d>] __put_task_struct+0xc2/0xdb
> [<ffffffff8104dfc7>] put_task_struct+0x1e/0x22
> [<ffffffff8104e144>] delayed_put_task_struct+0x7a/0x98
> [<ffffffff810cf0e5>] __rcu_process_callbacks+0x269/0x3df
> [<ffffffff810cf28c>] rcu_process_callbacks+0x31/0x5b
> [<ffffffff8105266d>] __do_softirq+0x122/0x277
>
> This usage pattern could not be triggered before kmem came into play.
> With the introduction of kmem stack handling, it is possible that we
> call the last mem_cgroup_put() from the task destructor, which is run in
> an rcu callback. Such callbacks are run with softirqs disabled, leading
> to the offensive usage pattern.
>
> In general, we have little, if any, means to guarantee in which context
> the last memcg_put will happen. The best we can do is test it and try to
> make sure no invalid context releases are happening. But as we add more
> code to memcg, the possible interactions grow in number and expose more
> ways to get context conflicts. One thing to keep in mind, is that part
> of the freeing process is already deferred to a worker, such as vfree(),
> that can only be called from process context.
>
> For the moment, the only two functions we really need moved away are:
>
> * free_css_id(), and
> * mem_cgroup_remove_from_trees().
>
> But because the later accesses per-zone info,
> free_mem_cgroup_per_zone_info() needs to be moved as well. With that, we
> are left with the per_cpu stats only. Better move it all.
>
> Signed-off-by: Glauber Costa <glommer@parallels.com>
> Tested-by: Greg Thelen <gthelen@google.com>
> CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11173&goto=48289#msg_48289
https://new-forum.openvz.org/index.php?t=post&reply_to=48289
https://new-forum.openvz.org/index.php

> CC: Michal Hocko <mhocko@suse.cz>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> CC: Tejun Heo <tj@kernel.org>

OK, it seems it is much easier this way.
Acked-by: Michal Hocko <mhocko@suse.cz>

> ---
> mm/memcontrol.c | 66 +++++++++++++++++++++++++++++----------------------------
> 1 file changed, 34 insertions(+), 32 deletions(-)
>
> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
> index 2f92f89..c5215f1 100644
> --- a/mm/memcontrol.c
> +++ b/mm/memcontrol.c
> @@ -5205,16 +5205,29 @@ out_free:
> }
>
> /*
> - * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
> - * but in process context. The work_freeing structure is overlaid
> - * on the rcu_freeing structure, which itself is overlaid on memsw.
> + * At destroying mem_cgroup, references from swap_cgroup can remain.
> + * (scanning all at force_empty is too costly...)
> + *
> + * Instead of clearing all references at force_empty, we remember
> + * the number of reference from swap_cgroup and free mem_cgroup when
> + * it goes down to 0.
> + *
> + * Removal of cgroup itself succeeds regardless of refs from swap.
> */
> -static void free_work(struct work_struct *work)
> +
> +static void __mem_cgroup_free(struct mem_cgroup *memcg)
> {
> -	struct mem_cgroup *memcg;
> +	int node;
> 	int size = sizeof(struct mem_cgroup);
>
> -	memcg = container_of(work, struct mem_cgroup, work_freeing);
> +	mem_cgroup_remove_from_trees(memcg);
> +	free_css_id(&mem_cgroup_subsys, &memcg->css);
> +
> +	for_each_node(node)
> +		free_mem_cgroup_per_zone_info(memcg, node);
> +
> +	free_percpu(memcg->stat);
> +

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 	/*
> 	 * We need to make sure that (at least for now), the jump label
> 	 * destruction code runs outside of the cgroup lock. This is because
> @@ -5233,38 +5246,27 @@ static void free_work(struct work_struct *work)
> 		vfree(memcg);
> }
>
> -static void free_rcu(struct rcu_head *rcu_head)
> -{
> -	struct mem_cgroup *memcg;
> -
> -	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
> -	INIT_WORK(&memcg->work_freeing, free_work);
> -	schedule_work(&memcg->work_freeing);
> -}
>
> /*
> - * At destroying mem_cgroup, references from swap_cgroup can remain.
> - * (scanning all at force_empty is too costly...)
> - *
> - * Instead of clearing all references at force_empty, we remember
> - * the number of reference from swap_cgroup and free mem_cgroup when
> - * it goes down to 0.
> - *
> - * Removal of cgroup itself succeeds regardless of refs from swap.
> + * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
> + * but in process context. The work_freeing structure is overlaid
> + * on the rcu_freeing structure, which itself is overlaid on memsw.
> */
> -
> -static void __mem_cgroup_free(struct mem_cgroup *memcg)
> +static void free_work(struct work_struct *work)
> {
> -	int node;
> +	struct mem_cgroup *memcg;
>
> -	mem_cgroup_remove_from_trees(memcg);
> -	free_css_id(&mem_cgroup_subsys, &memcg->css);
> +	memcg = container_of(work, struct mem_cgroup, work_freeing);
> +	__mem_cgroup_free(memcg);
> +}
>
> -	for_each_node(node)
> -		free_mem_cgroup_per_zone_info(memcg, node);
> +static void free_rcu(struct rcu_head *rcu_head)
> +{
> +	struct mem_cgroup *memcg;
>

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -	free_percpu(memcg->stat);
> -	call_rcu(&memcg->rcu_freeing, free_rcu);
> +	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
> +	INIT_WORK(&memcg->work_freeing, free_work);
> +	schedule_work(&memcg->work_freeing);
> }
>
> static void mem_cgroup_get(struct mem_cgroup *memcg)
> @@ -5276,7 +5278,7 @@ static void __mem_cgroup_put(struct mem_cgroup *memcg, int
count)
> {
> 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
> 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
> -		__mem_cgroup_free(memcg);
> +		call_rcu(&memcg->rcu_freeing, free_rcu);
> 		if (parent)
> 			mem_cgroup_put(parent);
> 	}
> --
> 1.7.11.4
>
> --
> To unsubscribe from this list: send the line "unsubscribe cgroups" in
> the body of a message to majordomo@vger.kernel.org
> More majordomo info at http://vger.kernel.org/majordomo-info.html

--
Michal Hocko
SUSE Labs

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

