
Subject: Re: [PATCH v4 06/14] memcg: kmem controller infrastructure
Posted by Michal Hocko on Thu, 11 Oct 2012 12:42:12 GMT
View Forum Message <> Reply to Message

On Mon 08-10-12 14:06:12, Glauber Costa wrote:
> This patch introduces infrastructure for tracking kernel memory pages to
> a given memcg. This will happen whenever the caller includes the flag
> __GFP_KMEMCG flag, and the task belong to a memcg other than the root.
>
> In memcontrol.h those functions are wrapped in inline acessors. The
> idea is to later on, patch those with static branches, so we don't incur
> any overhead when no mem cgroups with limited kmem are being used.
>
> Users of this functionality shall interact with the memcg core code
> through the following functions:
>
> memcg_kmem_newpage_charge: will return true if the group can handle the
> allocation. At this point, struct page is not
> yet allocated.
>
> memcg_kmem_commit_charge: will either revert the charge, if struct page
> allocation failed, or embed memcg information
> into page_cgroup.
>
> memcg_kmem_uncharge_page: called at free time, will revert the charge.
>
> [v2: improved comments and standardized function names]
> [v3: handle no longer opaque, functions not exported,
> even more comments]
> [v4: reworked Used bit handling and surroundings for more clarity]
> [v5: simplified code for kmemcg compiled out and core functions in
> memcontrol.c, moved kmem code to the middle to avoid forward decls]
>
> Signed-off-by: Glauber Costa <glommer@parallels.com>
> CC: Christoph Lameter <cl@linux.com>
> CC: Pekka Enberg <penberg@cs.helsinki.fi>
> CC: Michal Hocko <mhocko@suse.cz>
> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> ---
> include/linux/memcontrol.h | 95 +++++++++++++++++++++++++
> mm/memcontrol.c | 173 +++--
> 2 files changed, 263 insertions(+), 5 deletions(-)
>
> diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
> index 8d9489f..783cd78 100644
> --- a/include/linux/memcontrol.h
> +++ b/include/linux/memcontrol.h

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11173&goto=48283#msg_48283
https://new-forum.openvz.org/index.php?t=post&reply_to=48283
https://new-forum.openvz.org/index.php

> @@ -21,6 +21,7 @@
> #define _LINUX_MEMCONTROL_H
> #include <linux/cgroup.h>
> #include <linux/vm_event_item.h>
> +#include <linux/hardirq.h>
>
> struct mem_cgroup;
> struct page_cgroup;
> @@ -399,6 +400,85 @@ struct sock;
> #ifdef CONFIG_MEMCG_KMEM
> void sock_update_memcg(struct sock *sk);
> void sock_release_memcg(struct sock *sk);
> +
> +static inline bool memcg_kmem_enabled(void)
> +{
> +	return true;
> +}
> +V
> +extern bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
> +					int order);
> +extern void __memcg_kmem_commit_charge(struct page *page,
> +				 struct mem_cgroup *memcg, int order);
> +extern void __memcg_kmem_uncharge_page(struct page *page, int order);

Just a nit. Hmm we are far from being consisten in using vs. not using
externs in header files for function declarations but I do not see any
reason why to use them here. Names are just longer without any
additional value.

[...]
> +static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
> +{
> +	struct res_counter *fail_res;
> +	struct mem_cgroup *_memcg;
> +	int ret = 0;
> +	bool may_oom;
> +
> +	/*
> +	 * Conditions under which we can wait for the oom_killer.
> +	 * __GFP_NORETRY should be masked by __mem_cgroup_try_charge,
> +	 * but there is no harm in being explicit here
> +	 */
> +	may_oom = (gfp & __GFP_WAIT) && !(gfp & __GFP_NORETRY);

Well we _have to_ check __GFP_NORETRY here because if we don't then we
can end up in OOM. mem_cgroup_do_charge returns CHARGE_NOMEM for
__GFP_NORETRY (without doing any reclaim) and of oom==true we decrement
oom retries counter and eventually hit OOM killer. So the comment is

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

misleading.
> +
> +	_memcg = memcg;
> +	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
> +				 &_memcg, may_oom);
> +
> +	if (!ret) {
> +		ret = res_counter_charge(&memcg->kmem, size, &fail_res);

Now that I'm thinking about the charging ordering we should charge the
kmem first because we would like to hit kmem limit before we hit u+k
limit, don't we.
Say that you have kmem limit 10M and the total limit 50M. Current `u'
would be 40M and this charge would cause kmem to hit the `k' limit. I
think we should fail to charge kmem before we go to u+k and potentially
reclaim/oom.
Or has this been alredy discussed and I just do not remember?

> +		if (ret) {
> +			res_counter_uncharge(&memcg->res, size);
> +			if (do_swap_account)
> +				res_counter_uncharge(&memcg->memsw, size);
> +		}
[...]
> +bool
> +__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
> +{
> +	struct mem_cgroup *memcg;
> +	int ret;
> +
> +	*_memcg = NULL;
> +	memcg = try_get_mem_cgroup_from_mm(current->mm);
> +
> +	/*
> +	 * very rare case described in mem_cgroup_from_task. Unfortunately there
> +	 * isn't much we can do without complicating this too much, and it would
> +	 * be gfp-dependent anyway. Just let it go
> +	 */
> +	if (unlikely(!memcg))
> +		return true;
> +
> +	if (!memcg_can_account_kmem(memcg)) {
> +		css_put(&memcg->css);
> +		return true;
> +	}
> +
	/*
	 * Keep reference on memcg while the page is charged to prevent

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

	 * group from vanishing because allocation can outlive their
	 * tasks. The reference is dropped in __memcg_kmem_uncharge_page
	 */

please
> +	mem_cgroup_get(memcg);
> +
> +	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
> +	if (!ret)
> +		*_memcg = memcg;
> +	else
> +		mem_cgroup_put(memcg);
> +
> +	css_put(&memcg->css);
> +	return (ret == 0);
> +}
> +
[...]
--
Michal Hocko
SUSE Labs

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

