
Subject: Re: [PATCH v3 12/13] execute the whole memcg freeing in rcu callback
Posted by Johannes Weiner on Fri, 05 Oct 2012 15:31:00 GMT
View Forum Message <> Reply to Message

On Thu, Oct 04, 2012 at 02:53:13PM +0400, Glauber Costa wrote:
> On 10/01/2012 05:27 PM, Michal Hocko wrote:
> > On Tue 18-09-12 18:04:09, Glauber Costa wrote:
> >> A lot of the initialization we do in mem_cgroup_create() is done with softirqs
> >> enabled. This include grabbing a css id, which holds &ss->id_lock->rlock, and
> >> the per-zone trees, which holds rtpz->lock->rlock. All of those signal to the
> >> lockdep mechanism that those locks can be used in SOFTIRQ-ON-W context. This
> >> means that the freeing of memcg structure must happen in a compatible context,
> >> otherwise we'll get a deadlock.
> >
> > Maybe I am missing something obvious but why cannot we simply disble
> > (soft)irqs in mem_cgroup_create rather than make the free path much more
> > complicated. It really feels strange to defer everything (e.g. soft
> > reclaim tree cleanup which should be a no-op at the time because there
> > shouldn't be any user pages in the group).
> >
>
> Ok.
>
> I was just able to come back to this today - I was mostly working on the
> slab feedback over the past few days. I will answer yours and Tejun's
> concerns at once:
>
> Here is the situation: the backtrace I get is this one:
>
> [124.956725] =================================
> [124.957217] [INFO: inconsistent lock state]
> [124.957217] 3.5.0+ #99 Not tainted
> [124.957217] ---------------------------------
> [124.957217] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
> [124.957217] ksoftirqd/0/3 [HC0[0]:SC1[1]:HE1:SE0] takes:
> [124.957217] (&(&ss->id_lock)->rlock){+.?...}, at:
> [<ffffffff810aa7b2>] spin_lock+0x9/0xb
> [124.957217] {SOFTIRQ-ON-W} state was registered at:
> [124.957217] [<ffffffff810996ed>] __lock_acquire+0x31f/0xd68
> [124.957217] [<ffffffff8109a660>] lock_acquire+0x108/0x15c
> [124.957217] [<ffffffff81534ec4>] _raw_spin_lock+0x40/0x4f
> [124.957217] [<ffffffff810aa7b2>] spin_lock+0x9/0xb
> [124.957217] [<ffffffff810ad00e>] get_new_cssid+0x69/0xf3
> [124.957217] [<ffffffff810ad0da>] cgroup_init_idr+0x42/0x60
> [124.957217] [<ffffffff81b20e04>] cgroup_init+0x50/0x100
> [124.957217] [<ffffffff81b05b9b>] start_kernel+0x3b9/0x3ee
> [124.957217] [<ffffffff81b052d6>] x86_64_start_reservations+0xb1/0xb5
> [124.957217] [<ffffffff81b053d8>] x86_64_start_kernel+0xfe/0x10b

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5127
https://new-forum.openvz.org/index.php?t=rview&th=11136&goto=48213#msg_48213
https://new-forum.openvz.org/index.php?t=post&reply_to=48213
https://new-forum.openvz.org/index.php

>
>
> So what we learn from it, is: we are acquiring a specific lock (the css
> id one) from softirq context. It was previously taken in a
> softirq-enabled context, that seems to be coming directly from
> get_new_cssid.
>
> Tejun correctly pointed out that we should never acquire that lock from
> a softirq context, in which he is right.
>
> But the situation changes slightly with kmem. Now, the following excerpt
> of a backtrace is possible:
>
> [48.602775] [<ffffffff81103095>] free_accounted_pages+0x47/0x4c
> [48.602775] [<ffffffff81047f90>] free_task+0x31/0x5c
> [48.602775] [<ffffffff8104807d>] __put_task_struct+0xc2/0xdb
> [48.602775] [<ffffffff8104dfc7>] put_task_struct+0x1e/0x22
> [48.602775] [<ffffffff8104e144>] delayed_put_task_struct+0x7a/0x98
> [48.602775] [<ffffffff810cf0e5>] __rcu_process_callbacks+0x269/0x3df
> [48.602775] [<ffffffff810cf28c>] rcu_process_callbacks+0x31/0x5b
> [48.602775] [<ffffffff8105266d>] __do_softirq+0x122/0x277
>
> So as you can see, free_accounted_pages (that will trigger a memcg_put()
> -> mem_cgroup_free()) can now be called from softirq context, which is,
> an rcu callback (and I just realized I wrote the exact opposite in the
> subj line: man, I really suck at that!!)
> As a matter of fact, we could not move to our rcu callback as well:
>
> we need to move it to a worker thread with the rest.
>
> We already have a worker thread: he reason we have it is not
> static_branches: The reason is vfree(), that will BUG_ON(in_interrupt())
> and could not be called from rcu callback as well. We moved static
> branches in there as well for a similar problem, but haven't introduced it.
>
> Could we move just part of it to the worker thread? Absolutely yes.
> Moving just free_css_id() is enough to make it work. But since it is not
> the first context related problem we had, I thought: "to hell with that,
> let's move everything and be safe".
>
> I am fine moving free_css_id() only if you would prefer.
>
> Can we disable softirqs when we initialize css_id? Maybe. My machine
> seems to boot fine and survive the simple workload that would trigger
> that bug if I use irqsave spinlocks instead of normal spinlocks. But
> this has to be done from cgroup core: We have no control over css
> creation in memcg.
>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> How would you guys like me to handle this ?

Without the vfree callback, I would have preferred just making the
id_lock softirq safe. But since we have to defer (parts of) freeing
anyway, I like your approach of just deferring the rest as well
better.

But please add comments why the stuff in there is actually deferred.
Just simple notes like:

"this can be called from atomic contexts, <examples>",

"vfree must run from process context" and "css_id locking is not soft
irq safe",

"to hell with that, let's just do everything from the workqueue and be
safe and simple".

(And this may be personal preference, but why have free_work call
__mem_cgroup_free()? Does anyone else need to call that code? There
are too many layers already, why not just keep it all in free_work()
and have one less stack frame on your mind? :))

As for the changelog, here is my attempt:

mm: memcg: defer whole memcg tear-down to workqueue

The final memcg put can already happen in atomic context and so the
freeing is deferred to a workqueue because it needs to use vfree().

Kmem tracking will add freeing from softirq context, but the id_lock
acquired when destroying the cgroup object is not softirq safe, e.g.:

> [48.602775] [<ffffffff81103095>] free_accounted_pages+0x47/0x4c
> [48.602775] [<ffffffff81047f90>] free_task+0x31/0x5c
> [48.602775] [<ffffffff8104807d>] __put_task_struct+0xc2/0xdb
> [48.602775] [<ffffffff8104dfc7>] put_task_struct+0x1e/0x22
> [48.602775] [<ffffffff8104e144>] delayed_put_task_struct+0x7a/0x98
> [48.602775] [<ffffffff810cf0e5>] __rcu_process_callbacks+0x269/0x3df
> [48.602775] [<ffffffff810cf28c>] rcu_process_callbacks+0x31/0x5b
> [48.602775] [<ffffffff8105266d>] __do_softirq+0x122/0x277

To avoid making tear-down too complicated - making locks soft irq
safe, having half the cleanup in one function on the other half
somewhere else - just defer everything to the workqueue.

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

