
Subject: Re: [PATCH v3 12/13] execute the whole memcg freeing in rcu callback
Posted by Glauber Costa on Thu, 04 Oct 2012 10:53:13 GMT
View Forum Message <> Reply to Message

On 10/01/2012 05:27 PM, Michal Hocko wrote:
> On Tue 18-09-12 18:04:09, Glauber Costa wrote:
>> A lot of the initialization we do in mem_cgroup_create() is done with softirqs
>> enabled. This include grabbing a css id, which holds &ss->id_lock->rlock, and
>> the per-zone trees, which holds rtpz->lock->rlock. All of those signal to the
>> lockdep mechanism that those locks can be used in SOFTIRQ-ON-W context. This
>> means that the freeing of memcg structure must happen in a compatible context,
>> otherwise we'll get a deadlock.
>
> Maybe I am missing something obvious but why cannot we simply disble
> (soft)irqs in mem_cgroup_create rather than make the free path much more
> complicated. It really feels strange to defer everything (e.g. soft
> reclaim tree cleanup which should be a no-op at the time because there
> shouldn't be any user pages in the group).
>

Ok.

I was just able to come back to this today - I was mostly working on the
slab feedback over the past few days. I will answer yours and Tejun's
concerns at once:

Here is the situation: the backtrace I get is this one:

[124.956725] =================================
[124.957217] [INFO: inconsistent lock state]
[124.957217] 3.5.0+ #99 Not tainted
[124.957217] ---------------------------------
[124.957217] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
[124.957217] ksoftirqd/0/3 [HC0[0]:SC1[1]:HE1:SE0] takes:
[124.957217] (&(&ss->id_lock)->rlock){+.?...}, at:
[<ffffffff810aa7b2>] spin_lock+0x9/0xb
[124.957217] {SOFTIRQ-ON-W} state was registered at:
[124.957217] [<ffffffff810996ed>] __lock_acquire+0x31f/0xd68
[124.957217] [<ffffffff8109a660>] lock_acquire+0x108/0x15c
[124.957217] [<ffffffff81534ec4>] _raw_spin_lock+0x40/0x4f
[124.957217] [<ffffffff810aa7b2>] spin_lock+0x9/0xb
[124.957217] [<ffffffff810ad00e>] get_new_cssid+0x69/0xf3
[124.957217] [<ffffffff810ad0da>] cgroup_init_idr+0x42/0x60
[124.957217] [<ffffffff81b20e04>] cgroup_init+0x50/0x100
[124.957217] [<ffffffff81b05b9b>] start_kernel+0x3b9/0x3ee
[124.957217] [<ffffffff81b052d6>] x86_64_start_reservations+0xb1/0xb5
[124.957217] [<ffffffff81b053d8>] x86_64_start_kernel+0xfe/0x10b

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11136&goto=48205#msg_48205
https://new-forum.openvz.org/index.php?t=post&reply_to=48205
https://new-forum.openvz.org/index.php

So what we learn from it, is: we are acquiring a specific lock (the css
id one) from softirq context. It was previously taken in a
softirq-enabled context, that seems to be coming directly from
get_new_cssid.

Tejun correctly pointed out that we should never acquire that lock from
a softirq context, in which he is right.

But the situation changes slightly with kmem. Now, the following excerpt
of a backtrace is possible:

[48.602775] [<ffffffff81103095>] free_accounted_pages+0x47/0x4c
[48.602775] [<ffffffff81047f90>] free_task+0x31/0x5c
[48.602775] [<ffffffff8104807d>] __put_task_struct+0xc2/0xdb
[48.602775] [<ffffffff8104dfc7>] put_task_struct+0x1e/0x22
[48.602775] [<ffffffff8104e144>] delayed_put_task_struct+0x7a/0x98
[48.602775] [<ffffffff810cf0e5>] __rcu_process_callbacks+0x269/0x3df
[48.602775] [<ffffffff810cf28c>] rcu_process_callbacks+0x31/0x5b
[48.602775] [<ffffffff8105266d>] __do_softirq+0x122/0x277

So as you can see, free_accounted_pages (that will trigger a memcg_put()
-> mem_cgroup_free()) can now be called from softirq context, which is,
an rcu callback (and I just realized I wrote the exact opposite in the
subj line: man, I really suck at that!!)
As a matter of fact, we could not move to our rcu callback as well:

we need to move it to a worker thread with the rest.

We already have a worker thread: he reason we have it is not
static_branches: The reason is vfree(), that will BUG_ON(in_interrupt())
and could not be called from rcu callback as well. We moved static
branches in there as well for a similar problem, but haven't introduced it.

Could we move just part of it to the worker thread? Absolutely yes.
Moving just free_css_id() is enough to make it work. But since it is not
the first context related problem we had, I thought: "to hell with that,
let's move everything and be safe".

I am fine moving free_css_id() only if you would prefer.

Can we disable softirqs when we initialize css_id? Maybe. My machine
seems to boot fine and survive the simple workload that would trigger
that bug if I use irqsave spinlocks instead of normal spinlocks. But
this has to be done from cgroup core: We have no control over css
creation in memcg.

How would you guys like me to handle this ?

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

