Subject: Re: [PATCH v3 08/13] res_counter: return amount of charges after
res_counter_uncharge
Posted by Michal Hocko on Mon, 01 Oct 2012 10:00:10 GMT

View Forum Message <> Reply to Message

On Tue 18-09-12 18:04:05, Glauber Costa wrote:
> |t is useful to know how many charges are still left after a call to
> res_counter_uncharge.

> While it is possible to issue a res_counter_read
> after uncharge, this is racy. It would be better if uncharge itself
> would tell us what the current status is.

Well | am not sure how less racy it would be if you return the old

value. It could be out of date when you read it, right? (this is even

more visible with res_counter_uncharge_until)

res_counter_read_u64 uses locks only for 32b when your change could help
to reduce lock contention. Other than that it is just res_counter_member
which is one cmp and a dereference. Sure you safe something but it is
barely noticable | guess.

| am not saying | do not like this change | just think that the

above part of the changelog doesn't fit. So it would be much better if
you tell us why this is needed for your patchset because the usage is
not part of the patch.

> Since the current return value is void, we don't need to worry about

> anything breaking due to this change: nobody relied on that, and only
> users appearing from now on will be checking this value.

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Suleiman Souhlal <suleiman@google.com>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> oo
> Documentation/cgroups/resource_counter.txt | 7 ++++---

> include/linux/res_counter.h | 12 +++++++-----

> kernel/res_counter.c | 20 +++++++++++++-momoo-
> 3files changed, 24 insertions(+), 15 deletions(-)

>

> diff --git a/Documentation/cgroups/resource_counter.txt
b/Documentation/cgroups/resource_counter.txt

> index 0c4a344..c4d99ed 100644

> --- a/Documentation/cgroups/resource_counter.txt

> +++ b/Documentation/cgroups/resource_counter.txt

> @@ -83,16 +83,17 @@ to work with it.

> res_counter->lock internally (it must be called with res_counter->lock

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11135&goto=48159#msg_48159
https://new-forum.openvz.org/index.php?t=post&reply_to=48159
https://new-forum.openvz.org/index.php

> held). The force parameter indicates whether we can bypass the limit.
>

> - e. void res_counter_uncharge[_locked]

>+ e. u64 res_counter_uncharge[_locked]

> (struct res_counter *rc, unsigned long val)

>
> When aresource is released (freed) it should be de-accounted

> from the resource counter it was accounted to. This is called

> - "uncharging".

> + "uncharging". The return value of this function indicate the amount
> + of charges still present in the counter.

>

> The _locked routines imply that the res_counter->lock is taken.

>

> - f. void res_counter_uncharge_until

> + f. u64 res_counter_uncharge_until

> (struct res_counter *rc, struct res_counter *top,

> unsinged long val)

>

> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h

> index 7d7fbe2..4b173b6 100644

> --- al/include/linux/res_counter.h

> +++ b/include/linux/res_counter.h

> @@ -130,14 +130,16 @@ int res_counter_charge_nofail(struct res_counter *counter,
> *

> *these calls check for usage underflow and show a warning on the console

> * _locked call expects the counter->lock to be taken

>+ *

> + * returns the total charges still present in @counter.

> *

>

> -void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val);
> -void res_counter_uncharge(struct res_counter *counter, unsigned long val);

> +u64 res_counter_uncharge_locked(struct res_counter *counter, unsigned long val);
> +u64 res_counter_uncharge(struct res_counter *counter, unsigned long val);

>

> -void res_counter_uncharge_until(struct res_counter *counter,

> - struct res_counter *top,

> - unsigned long val);

> +u64 res_counter_uncharge_until(struct res_counter *counter,

>+ struct res_counter *top,
>+ unsigned long val);
> /**

> *res_counter_margin - calculate chargeable space of a counter
> * @cnt: the counter

> diff --git a/kernel/res_counter.c b/kernel/res_counter.c

> index ad58laa..7b3d6dc 100644

> --- a/kernel/res_counter.c

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +++ b/kernel/res_counter.c

> @@ -86,33 +86,39 @@ int res_counter_charge_nofail(struct res_counter *counter, unsigned
long val,

> return __res_counter_charge(counter, val, limit_fail_at, true);

>}

>

> -void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val)

> +u64 res_counter_uncharge_locked(struct res_counter *counter, unsigned long val)

> {

> if (WARN_ON(counter->usage < val))

> val = counter->usage;
>
>

counter->usage -= val,
> + return counter->usage,;
>}
>
> -void res_counter_uncharge_until(struct res_counter *counter,
> - struct res_counter *top,
> - unsigned long val)
> +u64 res_counter_uncharge_until(struct res_counter *counter,

>+ struct res_counter *top,
> + unsigned long val)
>

> unsigned long flags;

> struct res_counter *c;

>+ u64 ret = 0,

>

> local_irg_save(flags);

> for (c = counter; c !=top; ¢ = c->parent) {
>+ ub4dr,

> spin_lock(&c->lock);

> - res_counter_uncharge_locked(c, val);
>+ r =res_counter_uncharge_locked(c, val);
>+ if (c == counter)

>+ ret=r,
> spin_unlock(&c->lock);
>}

> local_irg_restore(flags);

> + return ret;

>}

>

> -void res_counter_uncharge(struct res_counter *counter, unsigned long val)
> +u64 res_counter_uncharge(struct res_counter *counter, unsigned long val)
> {

> - res_counter_uncharge_until(counter, NULL, val);

> + return res_counter_uncharge_until(counter, NULL, val);

>}

>

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> static inline unsigned long long *

> -

>1.7.11.4

>

> -

> To unsubscribe from this list: send the line "unsubscribe cgroups" in
> the body of a message to majordomo@vger.kernel.org

> More majordomo info at http://vger.kernel.org/majordomo-info.html

Michal Hocko
SUSE Labs

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

