
Subject: Re: [RFC 2/4] memcg: make it suck faster
Posted by Glauber Costa on Wed, 26 Sep 2012 08:53:21 GMT
View Forum Message <> Reply to Message

On 09/26/2012 01:02 AM, Andrew Morton wrote:
>> nomemcg : memcg compile disabled.
>> > base : memcg enabled, patch not applied.
>> > bypassed : memcg enabled, with patch applied.
>> >
>> > base bypassed
>> > User 109.12 105.64
>> > System 1646.84 1597.98
>> > Elapsed 229.56 215.76
>> >
>> > nomemcg bypassed
>> > User 104.35 105.64
>> > System 1578.19 1597.98
>> > Elapsed 212.33 215.76
>> >
>> > So as one can see, the difference between base and nomemcg in terms
>> > of both system time and elapsed time is quite drastic, and consistent
>> > with the figures shown by Mel Gorman in the Kernel summit. This is a
>> > ~ 7 % drop in performance, just by having memcg enabled. memcg functions
>> > appear heavily in the profiles, even if all tasks lives in the root
>> > memcg.
>> >
>> > With bypassed kernel, we drop this down to 1.5 %, which starts to fall
>> > in the acceptable range. More investigation is needed to see if we can
>> > claim that last percent back, but I believe at last part of it should
>> > be.
> Well that's encouraging. I wonder how many users will actually benefit
> from this - did I hear that major distros are now using memcg in some
> system-infrastructure-style code?
>

If they do, they actually be come "users of memcg". This here is aimed
at non-users of memcg, which given all the whining about it, it seems to
be plenty.

Also, I noticed, for instance, that libvirt is now creating memcg
hierarchies for lxc and qemu as placeholders, before you actually create
any vm or container.

There are two ways around that:
1) Have userspace in general to defer the creation of those directories
until they are actually going to use it, given the costs associated with
this.

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11148&goto=48044#msg_48044
https://new-forum.openvz.org/index.php?t=post&reply_to=48044
https://new-forum.openvz.org/index.php

2) defer our creation of memcg structures until the first task joins the
group, which then is the most clear signal possible that this is being
used.

> iirc, the idea of disabling memcg operations until someone enables a
> container had a couple of problems:
>
I'll need other people to jump in here and make it specific, but in general:

> a) certain boot-time initialisation issn't performed and
>

I am calling page_cgroup_init() at 1st memcg creation time.
The problem still exist that we will have tasks that are in LRUs but
with page_cgroup not filled. I handled this is this series by just not
testing this case, and assuming that empty page_cgroup == root_cgroup.

This can make bugs harder to find should they arise, but I'll argue that
it is worth it, given the gains.

> b) when memcg starts running for real, it expects that certain stats
> gathering has been running since boot. If this is not the case,
> those stats are wrong and stuff breaks.
>

I need specifics as well, but in general, my strategy lays in the
observation that all those statistics are already gathered in a global
level. We just report the global statistics when someone asks for it for
the root cgroup.

> It would be helpful if you could summarise these and similar issues
> and describe how they were addressed.
>

See above.
I would appreciate if anyone with a more specific and directed concern
would raise it.

>> >
>> > ...
>> >
>> > struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
>> > {
>> > +	if (mem_cgroup_disabled())
>> > +		return root_mem_cgroup;
> There would be some benefit in inlining the above instructions into the

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> caller.
>
>> > 	return mem_cgroup_from_css(
>> > 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
>> > }
> In fact the entire mem_cgroup_from_cont() could be inlined.
>

Indeed.

>> > struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
>> > {
>> > +
>> > +	if (mem_cgroup_disabled())
>> > +		return root_mem_cgroup;
> Ditto.
>

Indeetto.

>> > 	/*
>> > 	 * mm_update_next_owner() may clear mm->owner to NULL
>> > 	 * if it races with swapoff, page migration, etc.
>> >
>> > ...
>> >

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

