
Subject: [PATCH v3 12/13] execute the whole memcg freeing in rcu callback
Posted by Glauber Costa on Tue, 18 Sep 2012 14:04:09 GMT
View Forum Message <> Reply to Message

A lot of the initialization we do in mem_cgroup_create() is done with softirqs
enabled. This include grabbing a css id, which holds &ss->id_lock->rlock, and
the per-zone trees, which holds rtpz->lock->rlock. All of those signal to the
lockdep mechanism that those locks can be used in SOFTIRQ-ON-W context. This
means that the freeing of memcg structure must happen in a compatible context,
otherwise we'll get a deadlock.

The reference counting mechanism we use allows the memcg structure to be freed
later and outlive the actual memcg destruction from the filesystem. However, we
have little, if any, means to guarantee in which context the last memcg_put
will happen. The best we can do is test it and try to make sure no invalid
context releases are happening. But as we add more code to memcg, the possible
interactions grow in number and expose more ways to get context conflicts.

We already moved a part of the freeing to a worker thread to be context-safe
for the static branches disabling. I see no reason not to do it for the whole
freeing action. I consider this to be the safe choice.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Tested-by: Greg Thelen <gthelen@google.com>
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Michal Hocko <mhocko@suse.cz>
CC: Johannes Weiner <hannes@cmpxchg.org>

 mm/memcontrol.c | 66 +++++++++++++++++++++++++++++----------------------------
 1 file changed, 34 insertions(+), 32 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index b05ecac..74654f0 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -5082,16 +5082,29 @@ out_free:
 }

 /*
- * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
- * but in process context. The work_freeing structure is overlaid
- * on the rcu_freeing structure, which itself is overlaid on memsw.
+ * At destroying mem_cgroup, references from swap_cgroup can remain.
+ * (scanning all at force_empty is too costly...)
+ *
+ * Instead of clearing all references at force_empty, we remember
+ * the number of reference from swap_cgroup and free mem_cgroup when
+ * it goes down to 0.

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11136&goto=47888#msg_47888
https://new-forum.openvz.org/index.php?t=post&reply_to=47888
https://new-forum.openvz.org/index.php

+ *
+ * Removal of cgroup itself succeeds regardless of refs from swap.
 */
-static void free_work(struct work_struct *work)
+
+static void __mem_cgroup_free(struct mem_cgroup *memcg)
 {
-	struct mem_cgroup *memcg;
+	int node;
 	int size = sizeof(struct mem_cgroup);

-	memcg = container_of(work, struct mem_cgroup, work_freeing);
+	mem_cgroup_remove_from_trees(memcg);
+	free_css_id(&mem_cgroup_subsys, &memcg->css);
+
+	for_each_node(node)
+		free_mem_cgroup_per_zone_info(memcg, node);
+
+	free_percpu(memcg->stat);
+
 	/*
 	 * We need to make sure that (at least for now), the jump label
 	 * destruction code runs outside of the cgroup lock. This is because
@@ -5110,38 +5123,27 @@ static void free_work(struct work_struct *work)
 		vfree(memcg);
 }

-static void free_rcu(struct rcu_head *rcu_head)
-{
-	struct mem_cgroup *memcg;
-
-	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
-	INIT_WORK(&memcg->work_freeing, free_work);
-	schedule_work(&memcg->work_freeing);
-}

 /*
- * At destroying mem_cgroup, references from swap_cgroup can remain.
- * (scanning all at force_empty is too costly...)
- *
- * Instead of clearing all references at force_empty, we remember
- * the number of reference from swap_cgroup and free mem_cgroup when
- * it goes down to 0.
- *
- * Removal of cgroup itself succeeds regardless of refs from swap.
+ * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
+ * but in process context. The work_freeing structure is overlaid
+ * on the rcu_freeing structure, which itself is overlaid on memsw.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 */
-
-static void __mem_cgroup_free(struct mem_cgroup *memcg)
+static void free_work(struct work_struct *work)
 {
-	int node;
+	struct mem_cgroup *memcg;

-	mem_cgroup_remove_from_trees(memcg);
-	free_css_id(&mem_cgroup_subsys, &memcg->css);
+	memcg = container_of(work, struct mem_cgroup, work_freeing);
+	__mem_cgroup_free(memcg);
+}

-	for_each_node(node)
-		free_mem_cgroup_per_zone_info(memcg, node);
+static void free_rcu(struct rcu_head *rcu_head)
+{
+	struct mem_cgroup *memcg;

-	free_percpu(memcg->stat);
-	call_rcu(&memcg->rcu_freeing, free_rcu);
+	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
+	INIT_WORK(&memcg->work_freeing, free_work);
+	schedule_work(&memcg->work_freeing);
 }

 static void mem_cgroup_get(struct mem_cgroup *memcg)
@@ -5153,7 +5155,7 @@ static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
 {
 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
-		__mem_cgroup_free(memcg);
+		call_rcu(&memcg->rcu_freeing, free_rcu);
 		if (parent)
 			mem_cgroup_put(parent);
 	}
--
1.7.11.4

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

