
Subject: Re: [PATCH v2 06/11] memcg: kmem controller infrastructure
Posted by Greg Thelen on Thu, 23 Aug 2012 00:07:45 GMT
View Forum Message <> Reply to Message

On Wed, Aug 22 2012, Glauber Costa wrote:

> On 08/22/2012 01:50 AM, Greg Thelen wrote:
>> On Thu, Aug 09 2012, Glauber Costa wrote:
>> 
>>> This patch introduces infrastructure for tracking kernel memory pages to
>>> a given memcg. This will happen whenever the caller includes the flag
>>> __GFP_KMEMCG flag, and the task belong to a memcg other than the root.
>>>
>>> In memcontrol.h those functions are wrapped in inline accessors.  The
>>> idea is to later on, patch those with static branches, so we don't incur
>>> any overhead when no mem cgroups with limited kmem are being used.
>>>
>>> [ v2: improved comments and standardized function names ]
>>>
>>> Signed-off-by: Glauber Costa <glommer@parallels.com>
>>> CC: Christoph Lameter <cl@linux.com>
>>> CC: Pekka Enberg <penberg@cs.helsinki.fi>
>>> CC: Michal Hocko <mhocko@suse.cz>
>>> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
>>> CC: Johannes Weiner <hannes@cmpxchg.org>
>>> ---
>>>  include/linux/memcontrol.h |  79 +++++++++++++++++++
>>>  mm/memcontrol.c            | 185 +++++++++++++++++++++++++++++++++++++++++++++
>>>  2 files changed, 264 insertions(+)
>>>
>>> diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
>>> index 8d9489f..75b247e 100644
>>> --- a/include/linux/memcontrol.h
>>> +++ b/include/linux/memcontrol.h
>>> @@ -21,6 +21,7 @@
>>>  #define _LINUX_MEMCONTROL_H
>>>  #include <linux/cgroup.h>
>>>  #include <linux/vm_event_item.h>
>>> +#include <linux/hardirq.h>
>>>  
>>>  struct mem_cgroup;
>>>  struct page_cgroup;
>>> @@ -399,6 +400,11 @@ struct sock;
>>>  #ifdef CONFIG_MEMCG_KMEM
>>>  void sock_update_memcg(struct sock *sk);
>>>  void sock_release_memcg(struct sock *sk);
>>> +
>>> +#define memcg_kmem_on 1

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5121
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47663#msg_47663
https://new-forum.openvz.org/index.php?t=post&reply_to=47663
https://new-forum.openvz.org/index.php


>>> +bool __memcg_kmem_new_page(gfp_t gfp, void *handle, int order);
>>> +void __memcg_kmem_commit_page(struct page *page, void *handle, int order);
>>> +void __memcg_kmem_free_page(struct page *page, int order);
>>>  #else
>>>  static inline void sock_update_memcg(struct sock *sk)
>>>  {
>>> @@ -406,6 +412,79 @@ static inline void sock_update_memcg(struct sock *sk)
>>>  static inline void sock_release_memcg(struct sock *sk)
>>>  {
>>>  }
>>> +
>>> +#define memcg_kmem_on 0
>>> +static inline bool
>>> +__memcg_kmem_new_page(gfp_t gfp, void *handle, int order)
>>> +{
>>> +	return false;
>>> +}
>>> +
>>> +static inline void  __memcg_kmem_free_page(struct page *page, int order)
>>> +{
>>> +}
>>> +
>>> +static inline void
>>> +__memcg_kmem_commit_page(struct page *page, struct mem_cgroup *handle, int order)
>>> +{
>>> +}
>>>  #endif /* CONFIG_MEMCG_KMEM */
>>> +
>>> +/**
>>> + * memcg_kmem_new_page: verify if a new kmem allocation is allowed.
>>> + * @gfp: the gfp allocation flags.
>>> + * @handle: a pointer to the memcg this was charged against.
>>> + * @order: allocation order.
>>> + *
>>> + * returns true if the memcg where the current task belongs can hold this
>>> + * allocation.
>>> + *
>>> + * We return true automatically if this allocation is not to be accounted to
>>> + * any memcg.
>>> + */
>>> +static __always_inline bool
>>> +memcg_kmem_new_page(gfp_t gfp, void *handle, int order)
>>> +{
>>> +	if (!memcg_kmem_on)
>>> +		return true;
>>> +	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
>>> +		return true;
>>> +	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


>>> +		return true;
>>> +	return __memcg_kmem_new_page(gfp, handle, order);
>>> +}
>>> +
>>> +/**
>>> + * memcg_kmem_free_page: uncharge pages from memcg
>>> + * @page: pointer to struct page being freed
>>> + * @order: allocation order.
>>> + *
>>> + * there is no need to specify memcg here, since it is embedded in page_cgroup
>>> + */
>>> +static __always_inline void
>>> +memcg_kmem_free_page(struct page *page, int order)
>>> +{
>>> +	if (memcg_kmem_on)
>>> +		__memcg_kmem_free_page(page, order);
>>> +}
>>> +
>>> +/**
>>> + * memcg_kmem_commit_page: embeds correct memcg in a page
>>> + * @handle: a pointer to the memcg this was charged against.
>>> + * @page: pointer to struct page recently allocated
>>> + * @handle: the memcg structure we charged against
>>> + * @order: allocation order.
>>> + *
>>> + * Needs to be called after memcg_kmem_new_page, regardless of success or
>>> + * failure of the allocation. if @page is NULL, this function will revert the
>>> + * charges. Otherwise, it will commit the memcg given by @handle to the
>>> + * corresponding page_cgroup.
>>> + */
>>> +static __always_inline void
>>> +memcg_kmem_commit_page(struct page *page, struct mem_cgroup *handle, int order)
>>> +{
>>> +	if (memcg_kmem_on)
>>> +		__memcg_kmem_commit_page(page, handle, order);
>>> +}
>>>  #endif /* _LINUX_MEMCONTROL_H */
>>>  
>>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>>> index 54e93de..e9824c1 100644
>>> --- a/mm/memcontrol.c
>>> +++ b/mm/memcontrol.c
>>> @@ -10,6 +10,10 @@
>>>   * Copyright (C) 2009 Nokia Corporation
>>>   * Author: Kirill A. Shutemov
>>>   *
>>> + * Kernel Memory Controller
>>> + * Copyright (C) 2012 Parallels Inc. and Google Inc.

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


>>> + * Authors: Glauber Costa and Suleiman Souhlal
>>> + *
>>>   * This program is free software; you can redistribute it and/or modify
>>>   * it under the terms of the GNU General Public License as published by
>>>   * the Free Software Foundation; either version 2 of the License, or
>>> @@ -434,6 +438,9 @@ struct mem_cgroup *mem_cgroup_from_css(struct
cgroup_subsys_state *s)
>>>  #include <net/ip.h>
>>>  
>>>  static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
>>> +static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta);
>>> +static void memcg_uncharge_kmem(struct mem_cgroup *memcg, s64 delta);
>>> +
>>>  void sock_update_memcg(struct sock *sk)
>>>  {
>>>  	if (mem_cgroup_sockets_enabled) {
>>> @@ -488,6 +495,118 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
>>>  }
>>>  EXPORT_SYMBOL(tcp_proto_cgroup);
>>>  #endif /* CONFIG_INET */
>>> +
>>> +static inline bool memcg_kmem_enabled(struct mem_cgroup *memcg)
>>> +{
>>> +	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
>>> +		memcg->kmem_accounted;
>>> +}
>>> +
>>> +/*
>>> + * We need to verify if the allocation against current->mm->owner's memcg is
>>> + * possible for the given order. But the page is not allocated yet, so we'll
>>> + * need a further commit step to do the final arrangements.
>>> + *
>>> + * It is possible for the task to switch cgroups in this mean time, so at
>>> + * commit time, we can't rely on task conversion any longer.  We'll then use
>>> + * the handle argument to return to the caller which cgroup we should commit
>>> + * against
>>> + *
>>> + * Returning true means the allocation is possible.
>>> + */
>>> +bool __memcg_kmem_new_page(gfp_t gfp, void *_handle, int order)
>>> +{
>>> +	struct mem_cgroup *memcg;
>>> +	struct mem_cgroup **handle = (struct mem_cgroup **)_handle;
>>> +	bool ret = true;
>>> +	size_t size;
>>> +	struct task_struct *p;
>>> +
>>> +	*handle = NULL;

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


>>> +	rcu_read_lock();
>>> +	p = rcu_dereference(current->mm->owner);
>>> +	memcg = mem_cgroup_from_task(p);
>>> +	if (!memcg_kmem_enabled(memcg))
>>> +		goto out;
>>> +
>>> +	mem_cgroup_get(memcg);
>>> +
>>> +	size = PAGE_SIZE << order;
>>> +	ret = memcg_charge_kmem(memcg, gfp, size) == 0;
>>> +	if (!ret) {
>>> +		mem_cgroup_put(memcg);
>>> +		goto out;
>>> +	}
>>> +
>>> +	*handle = memcg;
>>> +out:
>>> +	rcu_read_unlock();
>>> +	return ret;
>>> +}
>>> +EXPORT_SYMBOL(__memcg_kmem_new_page);
>>> +
>>> +void __memcg_kmem_commit_page(struct page *page, void *handle, int order)
>>> +{
>>> +	struct page_cgroup *pc;
>>> +	struct mem_cgroup *memcg = handle;
>>> +
>>> +	if (!memcg)
>>> +		return;
>>> +
>>> +	WARN_ON(mem_cgroup_is_root(memcg));
>>> +	/* The page allocation must have failed. Revert */
>>> +	if (!page) {
>>> +		size_t size = PAGE_SIZE << order;
>>> +
>>> +		memcg_uncharge_kmem(memcg, size);
>>> +		mem_cgroup_put(memcg);
>>> +		return;
>> 
>>> +
>>> +	pc = lookup_page_cgroup(page);
>>> +	lock_page_cgroup(pc);
>>> +	pc->mem_cgroup = memcg;
>>> +	SetPageCgroupUsed(pc);
>>> +	unlock_page_cgroup(pc);
>> 
>> I have no problem with the code here.  But, out of curiosity, why do we
>> need to lock the pc here and below in __memcg_kmem_free_page()?

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


>> 
>> For the allocating side, I don't think that migration or reclaim will be
>> manipulating this page.  But is there something else that we need the
>> locking for?
>> 
>> For the freeing side, it seems that anyone calling
>> __memcg_kmem_free_page() is going to be freeing a previously accounted
>> page.
>> 
>> I imagine that if we did not need the locking we would still need some
>> memory barriers to make sure that modifications to the PG_lru are
>> serialized wrt. to kmem modifying PageCgroupUsed here.
>> 
> Unlocking should do that, no?

Yes, I agree that your existing locking should provide the necessary
barriers.

>> Perhaps we're just trying to take a conservative initial implementation
>> which is consistent with user visible pages.
>>
>
> The way I see it, is not about being conservative, but rather about my
> physical safety. It is quite easy and natural to assume that "all
> modifications to page cgroup are done under lock". So someone modifying
> this later will likely find out about this exception in a rather
> unpleasant way. They know where I live, and guns for hire are everywhere.
>
> Note that it is not unreasonable to believe that we can modify this
> later. This can be a way out, for example, for the memcg lifecycle problem.
>
> I agree with your analysis and we can ultimately remove it, but if we
> cannot pinpoint any performance problems to here, maybe consistency
> wins. Also, the locking operation itself is a bit expensive, but the
> biggest price is the actual contention. If we'll have nobody contending
> for the same page_cgroup, the problem - if exists - shouldn't be that
> bad. And if we ever have, the lock is needed.

Sounds reasonable. Another reason we might have to eventually revisit
this lock is the fact that lock_page_cgroup() is not generally irq_safe.
I assume that slab pages may be freed in softirq and would thus (in an
upcoming patch series) call __memcg_kmem_free_page.  There are a few
factors that might make it safe to grab this lock here (and below in
__memcg_kmem_free_page) from hard/softirq context:
* the pc lock is a per page bit spinlock.  So we only need to worry
  about interrupting a task which holds the same page's lock to avoid
  deadlock.
* for accounted kernel pages, I am not aware of other code beyond

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


  __memcg_kmem_charge_page and __memcg_kmem_free_page which grab pc
  lock.  So we shouldn't find __memcg_kmem_free_page() called from a
  context which interrupted a holder of the page's pc lock.

>>> +}
>>> +
>>> +void __memcg_kmem_free_page(struct page *page, int order)
>>> +{
>>> +	struct mem_cgroup *memcg;
>>> +	size_t size;
>>> +	struct page_cgroup *pc;
>>> +
>>> +	if (mem_cgroup_disabled())
>>> +		return;
>>> +
>>> +	pc = lookup_page_cgroup(page);
>>> +	lock_page_cgroup(pc);
>>> +	memcg = pc->mem_cgroup;
>>> +	pc->mem_cgroup = NULL;
>>> +	if (!PageCgroupUsed(pc)) {
>> 
>> When do we expect to find PageCgroupUsed() unset in this routine?  Is
>> this just to handle the race of someone enabling kmem accounting after
>> allocating a page and then later freeing that page?
>> 
>
> All the time we have a valid memcg. It is marked Used at charge time, so
> this is how we differentiate between a tracked page and a non-tracked
> page. Note that even though we explicit mark the freeing call sites with
> free_allocated_page, etc, not all pc->memcg will be valid. There are
> unlimited memcgs, bypassed charges, GFP_NOFAIL allocations, etc.

Understood.  Thanks.

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

