Subject: Re: [PATCH v3] SUNRPC: protect service sockets lists during per-net
shutdown
Posted by Stanislav Kinsbursky on Mon, 20 Aug 2012 11:05:49 GMT

View Forum Message <> Reply to Message

> On Tue, Jul 24, 2012 at 03:40:37PM -0400, J. Bruce Fields wrote:

>> On Tue, Jul 03, 2012 at 04:58:57PM +0400, Stanislav Kinsbursky wrote:

>>> v3:

>>> 1) rebased on 3.5-rc3 kernel.

>>>

>>> v2: destruction of currently processing transport added:

>>> 1) Added marking of currently processing transports with XPT_CLOSE on per-net
>>> shutdown. These transports will be destroyed in svc_xprt_enqueue() (instead of
>>> enqueueing).

>>

>> That worries me:

>>

>> - Why did we originally defer close until svc_recv?

The problem | was trying to solve is shutting down of transports in use.

l.e. some transport was dequeued from pool in svc_recv() and some process called
Xpo_accept(), trying to create new socket, new transport and so on.

How to shutdown such transports properly?

The best idea | had was to check all such active transports (rgstp->rq_xprt) and
mark the with XPT_CLOSE. So then new transport will be destroyed without adding
to service lists.

Probably, I've missed some points and would be glad to hear your opinion on this.

>> - Are we sure there's no risk to performing it immediately in

>> svc_enqueue? Is it safe to call from the socket callbacks and

>> wherever else we call svc_enqueue?

>>

>> And in the past | haven't been good at testing for problems

>> here--instead they tend to show up when a use somewhere tries shutting
>> down a server that's under load.

>>

>> |'ll look more closely. Meanwhile you could split out that change as a

>> separate patch and convince me why it's right....

>

> Looking back at this:

>

> - adding the sv_lock looks like the right thing to do anyway

> independent of containers, because svc_age_temp_xprts may

> still be running.
>
>
>

- I'm increasingly unhappy about sharing rpc servers between
network namespaces. Everything would be easier to understand

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5627
https://new-forum.openvz.org/index.php?t=rview&th=10937&goto=47608#msg_47608
https://new-forum.openvz.org/index.php?t=post&reply_to=47608
https://new-forum.openvz.org/index.php

> if they were independent. Can we figure out how to do that?
>

Could you, please, elaborate on your your unhappiness?

l.e. 1 don't like it too. But the problem here, is that rpc server is tied with

kernel threads creation and destruction. And these threads can be only a part of
initial pid namespace (because we have only one kthreadd). And we decided do not
create new kernel thread per container when were discussing the problem last time.

>>
>> --b.

>>

>>> 2) newly created temporary transport in svc_recv() will be destroyed, if it's
>>> "parent” was marked with XPT_CLOSE.

>>> 3) spin_lock(&serv->sv_lock) was replaced by spin_lock _bh() in

>>> svc_close_net(&serv->sv_lock).

>>>

>>> Service sv_tempsocks and sv_permsocks lists are accessible by tasks with
>>> different network namespaces, and thus per-net service destruction must be
>>> protected.

>>> These lists are protected by service sv_lock. So lets wrap list munipulations
>>> with this lock and move tranports destruction outside wrapped area to prevent
>>> deadlocks.

>>>

>>> Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>

>>> -

>>> net/sunrpc/sve_Xprt.c | 56 +++++++++++tttttttttt bbbttt bbb
>>> 1 files changed, 52 insertions(+), 4 deletions(-)

>>>

>>> diff --git a/net/sunrpc/svc_xprt.c b/net/sunrpc/svc_xprt.c

>>> index 88f2bf6..4af2114 100644

>>> --- a/net/sunrpc/svc_xprt.c

>>> +++ b/net/sunrpc/svc_xprt.c

>>> @@ -320,6 +320,7 @@ void svc_xprt_enqueue(struct svc_xprt *xprt)

>>> struct svc_pool *pool;

>>> struct svc_rgst *rgstp;

>>> int cpu;

>>> + int destroy = 0;

>>>

>>> if (Isvc_xprt_has_something_to_do(xprt))

>>> return;

>>> @@ -338,6 +339,17 @@ void svc_xprt_enqueue(struct svc_xprt *xprt)

>>>

>>> pool->sp_stats.packets++;

>>>

>>> + [*

>>> + * Check transport close flag. It could be marked as closed on per-net

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> + * gervice shutdown.

>>> + %

>>> + if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {

>>> + [* Don't enqueue transport if it has to be destroyed. */

>>> + dprintk("svc: transport %p have to be closed\n", xprt);

>>> + destroy++;

>>> + goto out_unlock;

>>> +}

>>> +

>>> [* Mark transport as busy. It will remain in this state until

>>> *the provider calls svc_xprt_received. We update XPT_BUSY
>>> * gtomically because it also guards against trying to enqueue
>>> @@ -374,6 +386,8 @@ void svc_xprt_enqueue(struct svc_xprt *xprt)
>>>

>>> out_unlock:

>>> gpin_unlock_bh(&pool->sp_lock);

>>> + if (destroy)

>>> + svc_delete xprt(xprt);

>>>]

>>> EXPORT_SYMBOL_GPL(svc_xprt_enqueue);

>>>

>>> @@ -714,6 +728,13 @@ int svc_recv(struct svc_rgst *rgstp, long timeout)
>>> module_get(newxpt->xpt_class->xcl_owner);

>>> svc_check _conn_limits(xprt->xpt_server);

>>> spin_lock_bh(&serv->sv_lock);

>>> + f (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {

>>> + dprintk("svc_recv: found XPT_CLOSE on listener\n®);

>>>+ set bit(XPT_DETACHED, &newxpt->xpt_flags);

>>>+ spin_unlock_bh(&pool->sp_lock);

>>>+ svc_delete_xprt(newxpt);

>>>+ goto out_closed;

>>> 4+ }

>>> set bit(XPT_TEMP, &newxpt->xpt_flags);

>>> list_add(&newxpt->xpt_list, &serv->sv_tempsocks);

>>> serv->sv_tmpcnt++;

>>> @@ -739,6 +760,7 @@ int svc_recv(struct svc_rgst *rgstp, long timeout)
>>> |en = xprt->xpt_ops->xpo_recvirom(rgstp);

>>> dprintk("svc: got len=%d\n", len);

>>> |}

>>> +out_closed:

>>> svc_xprt_received(xprt);

>>>

>>> [* No data, incomplete (TCP) read, or accept() */

>>> @@ -936,6 +958,7 @@ static void svc_clear_pools(struct svc_serv *serv, struct net *net)
>>> struct svc_pool *pool;

>>> struct svc_xprt *xprt;

>>> struct svc_xprt *tmp;

>>> + struct svc_rqgst *rqstp;

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> inti;

>>>

>>> for (i = 0; i < serv->sv_nrpools; i++) {

>>> @@ -947,11 +970,16 @@ static void svc_clear_pools(struct svc_serv *serv, struct net *net)
>>> continue;

>>> list_del_init(&xprt->xpt_ready);

>>>]

>>> + list_for_each_entry(rgstp, &pool->sp_all_threads, rq_all) {

>>> + if (rqstp->rg_xprt && rqstp->rq_xprt->xpt_net == net)

>>>+ set bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);

>>> + }

>>> gpin_unlock_bh(&pool->sp_lock);
>>>

>>>]

>>>

>>> -static void svc_clear_list(struct list_head *xprt_list, struct net *net)
>>> +static void svc_clear_list(struct list_head *xprt_list, struct net *net,
>>>+ struct list_head *kill_list)

>>> {

>>> struct svc_xprt *xprt;

>>> struct svc_xprt *tmp;

>>> @@ -959,7 +987,8 @@ static void svc_clear_list(struct list_head *xprt_list, struct net *net)
>>> |ist_for_each_entry safe(xprt, tmp, xprt_list, xpt_list) {

>>> if (xprt->xpt_net != net)

>>> continue;

>>> - svc_delete_xprt(xprt);

>>> + list_move(&xprt->xpt_list, kill_list);

>>> + set_bit(XPT_DETACHED, &xprt->xpt_flags);

>>>

>>> list_for_each_entry(xprt, xprt_list, xpt_list)

>>> BUG_ON(xprt->xpt_net == net);

>>> @@ -967,6 +996,15 @@ static void svc_clear_list(struct list_head *xprt_list, struct net *net)
>>>

>>> void svc_close_net(struct svc_serv *serv, struct net *net)

>>>

>>> + struct svc_xprt *xprt, *tmp;

>>> + LIST_HEAD(KIll_list);

>>> +

>>> + [*

>>> + * Protect the lists, since they can be by tasks with different network
>>> 4+ * namespace contexts.

>>> + %/

>>> + spin_lock_bh(&serv->sv_lock);

>>> +

>>> gvc_close_list(&serv->sv_tempsocks, net);

>>> gvc_close_list(&serv->sv_permsocks, net);

>>>

>>> @@ -976,8 +1014,18 @@ void svc_close_net(struct svc_serv *serv, struct net *net)

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> *syc_xprt_enqueue will not add new entries without taking the
>>> *sp lock and checking XPT_BUSY.

>>> %

>>> - svc_clear_list(&serv->sv_tempsocks, net);

>>> - svc_clear_list(&serv->sv_permsocks, net);

>>> + svc_clear_list(&serv->sv_tempsocks, net, &Kill_list);

>>> + svc_clear_list(&serv->sv_permsocks, net, &Kkill_list);

>>> +

>>> + spin_unlock_bh(&serv->sv_lock);

>>> +

>>> + [*

>>> + * Destroy collected transports.

>>> + * Note: tranports has been marked as XPT_DETACHED on svc_clear_list(),
>>> + * 50 no need to protect againt list_del() in svc_delete_xprt().
>>> + *f

>>> + list_for_each_entry_safe(xprt, tmp, &kill_list, xpt_list)

>>> + svc_delete xprt(xprt);

>>>]

>>>

>>> [

>>>

Best regards,
Stanislav Kinsbursky

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

