
Subject: Re: [PATCH v2 06/11] memcg: kmem controller infrastructure
Posted by KAMEZAWA Hiroyuki on Fri, 17 Aug 2012 02:36:26 GMT
View Forum Message <> Reply to Message

(2012/08/13 17:28), Glauber Costa wrote:
>>>> + * Needs to be called after memcg_kmem_new_page, regardless of success or
>>>> + * failure of the allocation. if @page is NULL, this function will revert the
>>>> + * charges. Otherwise, it will commit the memcg given by @handle to the
>>>> + * corresponding page_cgroup.
>>>> + */
>>>> +static __always_inline void
>>>> +memcg_kmem_commit_page(struct page *page, struct mem_cgroup *handle, int order)
>>>> +{
>>>> +	if (memcg_kmem_on)
>>>> +		__memcg_kmem_commit_page(page, handle, order);
>>>> +}
>> Doesn't this 2 functions has no short-cuts ?
>
> Sorry kame, what exactly do you mean?
>
I meant avoinding function call. But please ignore, I missed following patches.

>> if (memcg_kmem_on && handle) ?
> I guess this can be done to avoid a function call.
>
>> Maybe free() needs to access page_cgroup...
>>
> Can you also be a bit more specific here?
>

Please ignore, I misunderstood the usage of free_accounted_pages().

>>>> +bool __memcg_kmem_new_page(gfp_t gfp, void *_handle, int order)
>>>> +{
>>>> +	struct mem_cgroup *memcg;
>>>> +	struct mem_cgroup **handle = (struct mem_cgroup **)_handle;
>>>> +	bool ret = true;
>>>> +	size_t size;
>>>> +	struct task_struct *p;
>>>> +
>>>> +	*handle = NULL;
>>>> +	rcu_read_lock();
>>>> +	p = rcu_dereference(current->mm->owner);
>>>> +	memcg = mem_cgroup_from_task(p);
>>>> +	if (!memcg_kmem_enabled(memcg))
>>>> +		goto out;
>>>> +

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47583#msg_47583
https://new-forum.openvz.org/index.php?t=post&reply_to=47583
https://new-forum.openvz.org/index.php

>>>> +	mem_cgroup_get(memcg);
>>>> +
>> This mem_cgroup_get() will be a potentioal performance problem.
>> Don't you have good idea to avoid accessing atomic counter here ?
>> I think some kind of percpu counter or a feature to disable "move task"
>> will be a help.
>
>
>
>
>>>> +	pc = lookup_page_cgroup(page);
>>>> +	lock_page_cgroup(pc);
>>>> +	pc->mem_cgroup = memcg;
>>>> +	SetPageCgroupUsed(pc);
>>>> +	unlock_page_cgroup(pc);
>>>> +}
>>>> +
>>>> +void __memcg_kmem_free_page(struct page *page, int order)
>>>> +{
>>>> +	struct mem_cgroup *memcg;
>>>> +	size_t size;
>>>> +	struct page_cgroup *pc;
>>>> +
>>>> +	if (mem_cgroup_disabled())
>>>> +		return;
>>>> +
>>>> +	pc = lookup_page_cgroup(page);
>>>> +	lock_page_cgroup(pc);
>>>> +	memcg = pc->mem_cgroup;
>>>> +	pc->mem_cgroup = NULL;
>
>> shouldn't this happen after checking "Used" bit ?
>> Ah, BTW, why do you need to clear pc->memcg ?
>
> As for clearing pc->memcg, I think I'm just being overzealous. I can't
> foresee any problems due to removing it.
>
> As for the Used bit, what difference does it make when we clear it?
>
I just want to see the same logic used in mem_cgroup_uncharge_common().
Hmm, at setting pc->mem_cgroup, the things happens in
 set pc->mem_cgroup
 set Used bit
order. If you clear pc->mem_cgroup
 unset Used bit
 clear pc->mem_cgroup
seems reasonable.

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>> +	if (!PageCgroupUsed(pc)) {
>>>> +		unlock_page_cgroup(pc);
>>>> +		return;
>>>> +	}
>>>> +	ClearPageCgroupUsed(pc);
>>>> +	unlock_page_cgroup(pc);
>>>> +
>>>> +	/*
>>>> +	 * Checking if kmem accounted is enabled won't work for uncharge, since
>>>> +	 * it is possible that the user enabled kmem tracking, allocated, and
>>>> +	 * then disabled it again.
>>>> +	 *
>>>> +	 * We trust if there is a memcg associated with the page, it is a valid
>>>> +	 * allocation
>>>> +	 */
>>>> +	if (!memcg)
>>>> +		return;
>>>> +
>>>> +	WARN_ON(mem_cgroup_is_root(memcg));
>>>> +	size = (1 << order) << PAGE_SHIFT;
>>>> +	memcg_uncharge_kmem(memcg, size);
>>>> +	mem_cgroup_put(memcg);
>> Why do we need ref-counting here ? kmem res_counter cannot work as
>> reference ?
> This is of course the pair of the mem_cgroup_get() you commented on
> earlier. If we need one, we need the other. If we don't need one, we
> don't need the other =)
>
> The guarantee we're trying to give here is that the memcg structure will
> stay around while there are dangling charges to kmem, that we decided
> not to move (remember: moving it for the stack is simple, for the slab
> is very complicated and ill-defined, and I believe it is better to treat
> all kmem equally here)
>
> So maybe we can be clever here, and avoid reference counting at all
> times. We call mem_cgroup_get() when the first charge occurs, and then
> go for mem_cgroup_put() when our count reaches 0.
>
> What do you think about that?
>

I think that should work. I don't want to add not-optimized atomic counter ops
in this very hot path.

>

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>> +#ifdef CONFIG_MEMCG_KMEM
>>>> +int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta)
>>>> +{
>> What does 'delta' means ?
>>
> I can change it to something like nr_bytes, more informative.
>
>>>> +	struct res_counter *fail_res;
>>>> +	struct mem_cgroup *_memcg;
>>>> +	int ret;
>>>> +	bool may_oom;
>>>> +	bool nofail = false;
>>>> +
>>>> +	may_oom = (gfp & __GFP_WAIT) && (gfp & __GFP_FS) &&
>>>> +	 !(gfp & __GFP_NORETRY);
>>>> +
>>>> +	ret = 0;
>>>> +
>>>> +	if (!memcg)
>>>> +		return ret;
>>>> +
>>>> +	_memcg = memcg;
>>>> +	ret = __mem_cgroup_try_charge(NULL, gfp, delta / PAGE_SIZE,
>>>> +	 &_memcg, may_oom);
>>>> +
>>>> +	if (ret == -EINTR) {
>>>> +		nofail = true;
>>>> +		/*
>>>> +		 * __mem_cgroup_try_charge() chosed to bypass to root due to
>>>> +		 * OOM kill or fatal signal. Since our only options are to
>>>> +		 * either fail the allocation or charge it to this cgroup, do
>>>> +		 * it as a temporary condition. But we can't fail. From a
>>>> +		 * kmem/slab perspective, the cache has already been selected,
>>>> +		 * by mem_cgroup_get_kmem_cache(), so it is too late to change
>>>> +		 * our minds
>>>> +		 */
>>>> +		res_counter_charge_nofail(&memcg->res, delta, &fail_res);
>>>> +		if (do_swap_account)
>>>> +			res_counter_charge_nofail(&memcg->memsw, delta,
>>>> +						 &fail_res);
>>>> +		ret = 0;
>> Hm, you returns 0 and this charge may never be uncharged....right ?
>>
>
> Can't see why. By returning 0 we inform our caller that the allocation
> succeeded. It is up to him to undo it later through a call to uncharge.
>
Hmm, okay. You trust callers.

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Thanks,
-Kame

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

