Subject: Re: [PATCH v2 06/11] memcg: kmem controller infrastructure
Posted by Greg Thelen on Thu, 16 Aug 2012 03:37:01 GMT

View Forum Message <> Reply to Message

On Wed, Aug 15 2012, Glauber Costa wrote:

> 0On 08/15/2012 09:12 PM, Greg Thelen wrote:

>> On Wed, Aug 15 2012, Glauber Costa wrote:

>>

>>> 0On 08/15/2012 08:38 PM, Greg Thelen wrote:

>>>> On Wed, Aug 15 2012, Glauber Costa wrote:

>>>>

>>>>> 0On 08/14/2012 10:58 PM, Greg Thelen wrote:

>>>>>> 0On Mon, Aug 13 2012, Glauber Costa wrote:

>S>5>5>>>

>>>>>>>>>> + WARN_ON(mem_cgroup_is_root(memcg));

>>>>>>>>>> + size = (1 << order) << PAGE_SHIFT;

>>>>>>>>>> + memcg_uncharge_kmem(memcg, size);

>>>>>>>>>> + mem_cgroup_put(memcg);

>>>>>>>> \Why do we need ref-counting here ? kmem res_counter cannot work as
>>>>>>>> reference ?

>>>>>>> This is of course the pair of the mem_cgroup_get() you commented on
>>>>>>> earlier. If we need one, we need the other. If we don't need one, we
>>>>>>> don't need the other =)

>S>>5>5>>>

>>>>>>> The guarantee we're trying to give here is that the memcg structure will
>>>>>>> stay around while there are dangling charges to kmem, that we decided
>>>>>>> not to move (remember: moving it for the stack is simple, for the slab
>>>>>>> is very complicated and ill-defined, and | believe it is better to treat
>>>>>>> gll kmem equally here)

>S>>>5>>

>>>>>> By keeping memcg structures hanging around until the last referring kmem
>>>>>> page is uncharged do such zombie memcg each consume a css_id and thus
>>>>>> put pressure on the 64k css_id space? | imagine in pathological cases
>>>>>> this would prevent creation of new cgroups until these zombies are
>>>>>> dereferenced.

>>5>>>

>>>>> Yes, but although this patch makes it more likely, it doesn't introduce
>>>>> that. If the tasks, for instance, grab a reference to the cgroup dentry
>>>>> in the filesystem (like their CWD, etc), they will also keep the cgroup
>>>>> around.

>>>>

>>>> Fair point. But this doesn't seems like a feature. It's probably not

>>>> needed initially, but what do you think about creating a

>>>> memcg_kernel_context structure which is allocated when memcg is

>>>> gllocated? Kernel pages charged to a memcg would have

>>>> page_cgroup->mem_cgroup=memcg_kernel_context rather than memcg. This
>>>> would allow the mem_cgroup and its css_id to be deleted when the cgroup

Page 1 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=5121
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47561#msg_47561
https://new-forum.openvz.org/index.php?t=post&reply_to=47561
https://new-forum.openvz.org/index.php

>>>> is unlinked from cgroupfs while allowing for the active kernel pages to
>>>> continue pointing to a valid memcg_kernel_context. This would be a
>>>> reference counted structure much like you are doing with memcg. When a
>>>> memcg is deleted the memcg_kernel_context would be linked into its
>>>> surviving parent memcg. This would avoid needing to visit each kernel
>>>> page.

>>>

>>> You need more, you need at the res_counters to stay around as well. And
>>> probably other fields.

>>

>> | am not sure the res_counters would need to stay around. Once a

>> memcg_kernel_context has been reparented, then any future kernel page
>> uncharge calls will uncharge the parent res_counter.

>

> Well, if you hold the memcg due to a reference, like in the dentry case,

> then fine. But if this is a dangling charge, as will be the case with

> the slab, then you have to uncharge it.

>

> An arbitrary number of parents might have been deleted as well, so you

> need to transverse them all until you reach a live parent to uncharge from.

| was thinking that each time a memcg is deleted move the
memcg_kernel_context from the victim memcg to its parent. When moving,
also update the context to refer to the parent and link context to
parent:
for_each_kernel_context(kernel_context, memcg) {
kernel_context->memcg = memcg->parent;
list_add(&kernel_context->list, &memcg->parent->kernel_contexts);

}

Whenever pages referring to a memcg_kernel_context are uncharged they
will uncharge the nearest surviving parent memcg.

> To do that, your counters have to be still alive.

The counters of nearest surviving parent will be alive and pointed to by
memcg_kernel_context->memcg.

>>> So my fear here is that as you add fields to that structure, you can

>>> defeat a bit the goal of reducing memory consumption. Still leaves the

>>> CSS space, yes. But by doing this we can introduce some subtle bugs by
>>> having a field in the wrong structure.

>>>

>>> Did you observe that to be a big problem in your systems?

>>

>> No | have not seen this yet. But our past solutions have reparented

>> kmem_cache's to root memcg so we have been avoiding zombie memcg. My
>> concerns with your approach are just a suspicion because we have been

Page 2 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

>> experimenting with accounting of even more kernel memory (e.g. vmalloc,
>> kernel stacks, page tables). As the scope of such accounting grows the
>> chance of long lived charged pages grows and thus the chance of zombies
>> which exhaust the css_id space grows.

>

> Well, since we agree this can all be done under the hood, I'd say let's

> wait until a problem actually exists, since the solution is likely to be

> a bit convoluted...

>

> | personally believe that if won't have a lot of task movement, most of

> the data will go away as the cgroup dies. The remainder shouldn't be too

> much to hold it in memory for a lot of time. This is of course assuming

> a real use case, not an adversarial scenario, which is quite easy to

> come up with: just create a task, hold a bunch of kmem, move the task

> away, delete the cgroup, etc.

>

> That said, nothing stops us to actively try to create a scenario that

> would demonstrate such a problem.

With our in-house per-memcg slab accounting (similar to what's discussed
here), we're seeing a few slab allocations (mostly radix_tree_node) that
survive a long time after memcg deletion. This isn't meant as criticism

of this patch series, just an fyi that | expect there will be scenarios

where some dead kmem caches will live for a long time. Though | think
that in your patches a dead kmem cache does not hold reference to the
memcg.

Page 3 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

