
Subject: Re: [PATCH v2 04/11] kmem accounting basic infrastructure
Posted by Ying Han on Wed, 15 Aug 2012 18:01:41 GMT
View Forum Message <> Reply to Message

On Wed, Aug 15, 2012 at 5:39 AM, Michal Hocko <mhocko@suse.cz> wrote:
> On Wed 15-08-12 13:33:55, Glauber Costa wrote:
> [...]
>> > This can
>> > be quite confusing. I am still not sure whether we should mix the two
>> > things together. If somebody wants to limit the kernel memory he has to
>> > touch the other limit anyway. Do you have a strong reason to mix the
>> > user and kernel counters?
>>
>> This is funny, because the first opposition I found to this work was
>> "Why would anyone want to limit it separately?" =p
>>
>> It seems that a quite common use case is to have a container with a
>> unified view of "memory" that it can use the way he likes, be it with
>> kernel memory, or user memory. I believe those people would be happy to
>> just silently account kernel memory to user memory, or at the most have
>> a switch to enable it.
>>
>> What gets clear from this back and forth, is that there are people
>> interested in both use cases.
>
> I am still not 100% sure myself. It is just clear that the reclaim would
> need some work in order to do accounting like this.
>
>> > My impression was that kernel allocation should simply fail while user
>> > allocations might reclaim as well. Why should we reclaim just because of
>> > the kernel allocation (which is unreclaimable from hard limit reclaim
>> > point of view)?
>>
>> That is not what the kernel does, in general. We assume that if he wants
>> that memory and we can serve it, we should. Also, not all kernel memory
>> is unreclaimable. We can shrink the slabs, for instance. Ying Han
>> claims she has patches for that already...
>
> Are those patches somewhere around?

Yes, I am working on it to post it sometime *this week*. My last
rebase is based on v3.3 and now I am trying to get it rebased to
github-memcg. The patch itself has a functional dependency on kernel
slab accounting, and I am trying to get that rebased on Glauber's tree
but has some difficulty now. What I am planning to do is post the RFC
w/ only complied version by far.

The patch handles dentry cache shrinker only at this moment. That is

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5973
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47549#msg_47549
https://new-forum.openvz.org/index.php?t=post&reply_to=47549
https://new-forum.openvz.org/index.php

what we discussed last time as well, where dentry contributes most of
the reclaimable objects. (it pins inode, so we leave inode behind)

--Ying
>
> [...]
>> > This doesn't check for the hierachy so kmem_accounted might not be in
>> > sync with it's parents. mem_cgroup_create (below) needs to copy
>> > kmem_accounted down from the parent and the above needs to check if this
>> > is a similar dance like mem_cgroup_oom_control_write.
>> >
>>
>> I don't see why we have to.
>>
>> I believe in a A/B/C hierarchy, C should be perfectly able to set a
>> different limit than its parents. Note that this is not a boolean.
>
> Ohh, I wasn't clear enough. I am not against setting the _limit_ I just
> meant that the kmem_accounted should be consistent within the hierarchy.
>
> --
> Michal Hocko
> SUSE Labs
>
> --
> To unsubscribe, send a message with 'unsubscribe linux-mm' in
> the body to majordomo@kvack.org. For more info on Linux MM,
> see: http://www.linux-mm.org/ .
> Don't email: email@kvack.org

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

