
Subject: Re: [PATCH v2 06/11] memcg: kmem controller infrastructure
Posted by Greg Thelen on Wed, 15 Aug 2012 16:38:57 GMT
View Forum Message <> Reply to Message

On Wed, Aug 15 2012, Glauber Costa wrote:

> On 08/14/2012 10:58 PM, Greg Thelen wrote:
>> On Mon, Aug 13 2012, Glauber Costa wrote:
>>
>>>>>> +	WARN_ON(mem_cgroup_is_root(memcg));
>>>>>> +	size = (1 << order) << PAGE_SHIFT;
>>>>>> +	memcg_uncharge_kmem(memcg, size);
>>>>>> +	mem_cgroup_put(memcg);
>>>> Why do we need ref-counting here ? kmem res_counter cannot work as
>>>> reference ?
>>> This is of course the pair of the mem_cgroup_get() you commented on
>>> earlier. If we need one, we need the other. If we don't need one, we
>>> don't need the other =)
>>>
>>> The guarantee we're trying to give here is that the memcg structure will
>>> stay around while there are dangling charges to kmem, that we decided
>>> not to move (remember: moving it for the stack is simple, for the slab
>>> is very complicated and ill-defined, and I believe it is better to treat
>>> all kmem equally here)
>>
>> By keeping memcg structures hanging around until the last referring kmem
>> page is uncharged do such zombie memcg each consume a css_id and thus
>> put pressure on the 64k css_id space? I imagine in pathological cases
>> this would prevent creation of new cgroups until these zombies are
>> dereferenced.
>
> Yes, but although this patch makes it more likely, it doesn't introduce
> that. If the tasks, for instance, grab a reference to the cgroup dentry
> in the filesystem (like their CWD, etc), they will also keep the cgroup
> around.

Fair point. But this doesn't seems like a feature. It's probably not
needed initially, but what do you think about creating a
memcg_kernel_context structure which is allocated when memcg is
allocated? Kernel pages charged to a memcg would have
page_cgroup->mem_cgroup=memcg_kernel_context rather than memcg. This
would allow the mem_cgroup and its css_id to be deleted when the cgroup
is unlinked from cgroupfs while allowing for the active kernel pages to
continue pointing to a valid memcg_kernel_context. This would be a
reference counted structure much like you are doing with memcg. When a
memcg is deleted the memcg_kernel_context would be linked into its
surviving parent memcg. This would avoid needing to visit each kernel
page.

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5121
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47542#msg_47542
https://new-forum.openvz.org/index.php?t=post&reply_to=47542
https://new-forum.openvz.org/index.php

>> Is there any way to see how much kmem such zombie memcg are consuming?
>> I think we could find these with
>> for_each_mem_cgroup_tree(root_mem_cgroup).
>
> Yes, just need an interface for that. But I think it is something that
> can be addressed orthogonaly to this work, in a separate patch, not as
> some fundamental limitation.

Agreed.

>> Basically, I'm wanting to know where kernel memory has been
>> allocated. For live memcg, an admin can cat
>> memory.kmem.usage_in_bytes. But for zombie memcg, I'm not sure how
>> to get this info. It looks like the root_mem_cgroup
>> memory.kmem.usage_in_bytes is not hierarchically charged.
>>
>
> Not sure what you mean by not being hierarchically charged. It should
> be, when use_hierarchy = 1. As a matter of fact, I just tested it, and I
> do see kmem being charged all the way to the root cgroup when hierarchy
> is used. (we just can't limit it there)

You're correct, my mistake.

I think the procedure to determine out the amount of zombie kmem is:
 root_mem_cgroup.kmem_usage_in_bytes -
 sum(all top level memcg memory.kmem_usage_in_bytes)

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

