Subject: [PATCH v2 09/11] memcg: propagate kmem limiting information to children
Posted by Glauber Costa on Thu, 09 Aug 2012 13:01:17 GMT

View Forum Message <> Reply to Message

The current memcg slab cache management fails to present satisfatory
hierarchical behavior in the following scenario:

-> [cgroups/memory/A/B/C

* kmem limit set at A,
* A and B have no tasks,
* span a new task inin C.

Because kmem_accounted is a boolean that was not set for C, no
accounting would be done. This is, however, not what we expect.

The basic idea, is that when a cgroup is limited, we walk the tree
upwards (something Kame and | already thought about doing for other
purposes), and make sure that we store the information about the parent
being limited in kmem_accounted (that is turned into a bitmap: two
booleans would not be space efficient). The code for that is taken from
sched/core.c. My reasons for not putting it into a common place is to
dodge the type issues that would arise from a common implementation
between memcg and the scheduler - but | think that it should ultimately
happen, so if you want me to do it now, let me know.

We do the reverse operation when a formerly limited cgroup becomes
unlimited.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

mm/memcontrol.c | 88 +++++++++++++++++++++++ bbb -
1 file changed, 79 insertions(+), 9 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c

index 3216292..3d30b79 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -295,7 +295,8 @@ struct mem_cgroup {
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;

Page 1 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11026&goto=47396#msg_47396
https://new-forum.openvz.org/index.php?t=post&reply_to=47396
https://new-forum.openvz.org/index.php

- bool kmem_accounted;
+

+ unsigned long kmem_accounted; /* See KMEM_ACCOUNTED_*, below */

bool oom_lock;

atomic_t under_oom,;
@@ -348,6 +349,38 @@ struct mem_cgroup {
#endif

|8

+enum {
+ KMEM_ACCOUNTED_THIS, /* accounted by this cgroup itself */
+ KMEM_ACCOUNTED_PARENT, /* accounted by any of its parents. */
+};
+
+#ifdef CONFIG_MEMCG_KMEM
+static bool memcg_kmem_account(struct mem_cgroup *memcg)
gl
+ return ltest_and_set_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted);
+}
+
+static bool memcg_kmem_clear_account(struct mem_cgroup *memcg)
gl
+ return test_and_clear_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted);
+}
+
+static bool memcg_kmem_is_accounted(struct mem_cgroup *memcg)
+H
+ return test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted);
+}
+
+static void memcg_kmem_account_parent(struct mem_cgroup *memcg)
+
+ set_bit(KMEM_ACCOUNTED_PARENT, &memcg->kmem_accounted);
+}
+
+static void memcg_kmem_clear_account_parent(struct mem_cgroup *memcg)
gl
+ clear_bit(KMEM_ACCOUNTED_PARENT, &memcg->kmem_accounted);
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
[* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
@@ -614,7 +647,7 @@ EXPORT_SYMBOL(__memcg_kmem_free_page);

static void disarm_kmem_keys(struct mem_cgroup *memcg)

Page 2 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

{

- if (memcg->kmem_accounted)
+ if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
static_key slow_dec(&memcg_kmem_enabled_key);
}
#else
@@ -4171,17 +4204,54 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
static void memcg_update_kmem_limit(struct mem_cgroup *memcg, u64 val)
{
#ifdef CONFIG_MEMCG_KMEM
-[*
- * Once enabled, can't be disabled. We could in theory disable it if we
- * haven't yet created any caches, or if we can shrink them all to
- * death. But it is not worth the trouble.
- %/
+ struct mem_cgroup *iter;
+
mutex_lock(&set_limit_mutex);
- if (!Imemcg->kmem_accounted && val '= RESOURCE_MAX) {
+if ((val '= RESOURCE_MAX) && memcg_kmem_account(memcg)) {
+
/*
* Once enabled, can't be disabled. We could in theory disable
* it if we haven't yet created any caches, or if we can shrink
* them all to death. But it is not worth the trouble
*/
static_key_slow_inc(&memcg_kmem_enabled_key);
- memcg->kmem_accounted = true;

+ 4+ + + +

if (!lmemcg->use_hierarchy)

goto out;
for_each_mem_cgroup_tree(iter, memcg) {
if (iter == memcq)

continue;
memcg_kmem_account_parent(iter);

}
} else if ((val == RESOURCE_MAX) && memcg_kmem_clear_account(memcg)) {

if ('memcg->use_hierarchy)
goto out;

for_each_mem_cgroup_tree(iter, memcg) {
struct mem_cgroup *parent;

if (iter == memcg)
continue;

+ 4+ +++ A+ A+ o+

Page 3 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+ [*
+ *We should only have our parent bit cleared if none
+ * of our parents are accounted. The transversal order
+ * of our iter function forces us to always look at the
+ * parents.
+ ¥
+ parent = parent_mem_cgroup(iter);
+ for (; parent '= memcg; parent = parent_mem_cgroup(iter))
+ if (memcg_kmem_is_accounted(parent))
+ goto noclear;
+ memcg_kmem_clear_account_parent(iter);
+noclear:
+ continue;
+}

}
+out:

mutex_unlock(&set_limit_mutex);
+

#endif

}
1.7.11.2

Page 4 of 4 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

