Subject: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:19 GMT

View Forum Message <> Reply to Message

From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

mem_cgroup_do_charge() was written before slab accounting, and expects
three cases: being called for 1 page, being called for a stock of 32 pages,

or being called for a hugepage. If we call for 2 or 3 pages (and several
slabs used in process creation are such, at least with the debug options |
had), it assumed it's being called for stock and just retried without reclaiming.

Fix that by passing down a minsize argument in addition to the csize.

And what to do about that (csize == PAGE_SIZE && ret) retry? If it's
needed at all (and presumably is since it's there, perhaps to handle

races), then it should be extended to more than PAGE_SIZE, yet how far?
And should there be a retry count limit, of what? For now retry up to
COSTLY_ORDER (as page_alloc.c does), stay safe with a cond_resched(),
and make sure nottodo itif __ GFP_NORETRY.

[v4: fixed nr pages calculation pointed out by Christoph Lameter]

Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
mm/memcontrol.c | 23 +++++++++++++++to-----

1 file changed, 16 insertions(+), 7 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 9304db2..8e601e8 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2158,8 +2158,16 @@ enum {
CHARGE_OOM_DIE, /*the current is killed because of OOM */

|3

+/*

+ * We need a number that is small enough to be likely to have been

+ * reclaimed even under pressure, but not too big to trigger unnecessary

+ * retries

+ */

+#define NR_PAGES_TO_RETRY 2

+

static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
- unsigned int nr_pages, bool oom_check)

+ unsigned int nr_pages, unsigned int min_pages,

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46917#msg_46917
https://new-forum.openvz.org/index.php?t=post&reply_to=46917
https://new-forum.openvz.org/index.php

+ bool oom_check)
{

unsigned long csize = nr_pages * PAGE_SIZE;

struct mem_cgroup *mem_over_limit;
@@ -2182,18 +2190,18 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
ofp_t gfp_mask,

} else

mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

/-k
- * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
- * of regular pages (CHARGE_BATCH), or a single regular page (1).
_ *

* Never reclaim on behalf of optional batching, retry with a

* single page instead.

*/
- if (nr_pages == CHARGE_BATCH)
+if (nr_pages > min_pages)

return CHARGE_RETRY;

if (/(gfp_mask & GFP_WAIT))
return CHARGE_WOULDBLOCK;

+if (gfp_mask & _ GFP_NORETRY)
+ return CHARGE_NOMEM,;
+
ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
return CHARGE_RETRY;
@@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t
gfp_mask,
* unlikely to succeed so close to the limit, and we fall back
* to regular pages anyway in case of failure.
*/
- if (nr_pages == 1 && ret)
+if (nr_pages <= NR_PAGES_TO_RETRY && ret)
return CHARGE_RETRY;

/*
@@ -2341,7 +2349,8 @@ again:
nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;

}

- ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
+ ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
+ oom_check);

switch (ret) {

case CHARGE_OK:

break;

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

1.7.10.2

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

