Subject: Re: [PATCH v3 3/6] expose fine-grained per-cpu data for cpuacct stats
Posted by Paul Turner on Wed, 30 May 2012 11:24:29 GMT

View Forum Message <> Reply to Message

On Wed, May 30, 2012 at 2:48 AM, Glauber Costa <glommer@parallels.com> wrote:
> The cpuacct cgroup already exposes user and system numbers in a per-cgroup
> fashion. But they are a summation along the whole group, not a per-cpu figure.
> Also, they are coarse-grained version of the stats usually shown at places

> like /proc/stat.

>

> | want to have enough cgroup data to emulate the /proc/stat interface. To

> achieve that, | am creating a new file "stat_percpu" that displays the

> fine-grained per-cpu data. The original data is left alone.

>

> The format of this file resembles the one found in the usual cgroup's stat

> files. But of course, the fields will be repeated, one per cpu, and prefixed

> with the cpu number.

>

> Therefore, we'll have something like:

>

cpuO.user X

cpuO.system Y

>
>
> .
> cpul.user X1

> cpul.system Y1

> .

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Peter Zijlstra <a.p.zijlstra@chello.nl>

> CC: Paul Turner <pjt@google.com>

> oo

> Kkernel/sched/core.c| 33 +++++++++++++++++++++++++++++++++

> 1 file changed, 33 insertions(+)

>

> diff --git a/kernel/sched/core.c b/kernel/sched/core.c

> index 220d416..4c1d7e9 100644

> --- a/kernel/sched/core.c

> +++ b/kernel/sched/core.c

> @@ -8178,6 +8178,35 @@ static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
> return O;

>}

>

> +static inline void do_fill_cb(struct cgroup_map_cb *cb, struct cpuacct *ca,
>+ char *str, int cpu, int index)

> +{

>+ char name[24];
>+ struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
>+

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5758
https://new-forum.openvz.org/index.php?t=rview&th=10854&goto=46623#msg_46623
https://new-forum.openvz.org/index.php?t=post&reply_to=46623
https://new-forum.openvz.org/index.php

>+ snprintf(name, sizeof(name), "cpu%d.%s", cpu, str);
>+ cb->fill(cb, name, cputime64_to_clock_t(kcpustat->cpustat[index]));

> +}

>+

> +static int cpuacct_stats_percpu_show(struct cgroup *cgrp, struct cftype *cft,
>+ struct cgroup_map_cb *cb)

> +{

>+ struct cpuacct *ca = cgroup_ca(cgrp);

>+ int cpu;

>+

>+ for_each_online_cpu(cpu) {

>+ do_fill_cb(cb, ca, "user", cpu, CPUTIME_USER);

>+ do_fill_cb(cb, ca, "nice", cpu, CPUTIME_NICE);

>+ do_fill_cb(chb, ca, "system", cpu, CPUTIME_SYSTEM);

>+ do_fill_cb(cb, ca, "irq", cpu, CPUTIME_IRQ);

>+ do_fill_cb(cb, ca, "softirq", cpu, CPUTIME_SOFTIRQ);

>+ do_fill_cb(chb, ca, "guest”, cpu, CPUTIME_GUEST);

>+ do_fill_cb(chb, ca, "guest_nice", cpu, CPUTIME_GUEST_NICE);
>+ }

>+

| don't know if there's much that can be trivially done about it but |

suspect these are a bit of a memory allocation time-bomb on a many-CPU
machine. The cgroup:seq_file mating (via read_map) treats everything

as /one/ record. This means that seq_printf is going to end up

eventually allocating a buffer that can fit _everything_ (as well as

every power-of-2 on the way there). Adding insult to injury is that

that the backing buffer is kmalloc() not vmalloc().

200+ bytes per-cpu above really is not unreasonable (46 bytes just for
the text, plus a byte per base 10 digit we end up reporting), but that
then leaves us looking at order-12/13 allocations just to print this
thing when there are O(many) cpus.

>+ return O;

> +}

>+

> static struct cftype files[] = {

> |

> .name = "usage",

> @@ -8192,6 +8221,10 @@ static struct cftype files[] = {
> .name = "stat",

> .read_map = cpuacct_stats_show,

> h

>+ {

>+ .name = "stat_percpu",

>+ .read_map = cpuacct_stats_percpu_show,
>+ }

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> {} [*terminate */
>}

>

> -

>1.7.10.2

>

Page 3 of 3 ---- Generated from

OpenVZ Forum

https://new-forum.openvz.org/index.php

