Subject: Re: [PATCH v2 2/5] account guest time per-cgroup as well.
Posted by Glauber Costa on Mon, 28 May 2012 09:03:19 GMT

View Forum Message <> Reply to Message

On 05/26/2012 08:44 AM, Paul Turner wrote:

> On 04/09/2012 03:25 PM, Glauber Costa wrote:

>> In the interest of providing a per-cgroup figure of common statistics,
>> this patch adds a nr_switches counter to each group runqueue (both cfs
>> and rt).

>>

>> To avoid impact on schedule(), we don't walk the tree at stat gather
>> time. This is because schedule() is called much more frequently than
>> the tick functions, in which we do walk the tree.

>>

>> When this figure needs to be read (different patch), we will

>> aggregate them at read time.

>>

>> Signed-off-by: Glauber Costa<glommer-bzQdu9zFT3WakBO8gow8eQ@public.gmane.org>
>> -

>> kernel/sched/core.c | 32 ++++++++++++++++++++++H+++H++H++++
>> kernel/sched/sched.h | 3 +++

>> 2 files changed, 35 insertions(+), O deletions(-)

>>

>> diff --git a/kernel/sched/core.c b/kernel/sched/core.c

>> index 1cfb7f0..1ee3772 100644

>> --- a/kernel/sched/core.c

>> +++ b/kernel/sched/core.c

>> @@ -3168,6 +3168,37 @@ pick_next_task(struct rq *rq)

>>]

>>

>> [*

>> + * For all other data, we do a tree walk at the time of

>> + * gathering. We want, however, to minimize the impact over schedule(),
>> + * pecause... well... it's schedule().

>> 4 %

>> + * Therefore we only gather for the current cgroup, and walk the tree
>> + * gt read time

\Y

>> + %/

>> +static void update_switches_task _group(struct rq *rq,
>> + struct task_struct *prev,

>> + struct task_struct *next)

>> +{

>> +#ifdef CONFIG_CGROUP_SCHED
>> + int cpu = cpu_of(rq);

>> +

>> + if (rg->curr_tg ==&root_task_group)
>> + goto out;

>> +

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10713&goto=46551#msg_46551
https://new-forum.openvz.org/index.php?t=post&reply_to=46551
https://new-forum.openvz.org/index.php

>> +#ifdef CONFIG_FAIR_GROUP_SCHED

>> + if (prev->sched_class ==&fair_sched_class)
>> + rg->curr_tg->cfs_rg[cpu]->nr_switches++;
>> +#endif

>> +#ifdef CONFIG_RT_GROUP_SCHED

>> + if (prev->sched_class ==&rt_sched_class)
>> + rg->curr_tg->rt_rq[cpu]->nr_switches++;
>> +#endif

>

> With this approach why differentiate cfs vs rt? These could both just
> be on the task_group.

>

> This could then just be

> if (prev != root_task_group)

> task_group(prev)->nr_switches++;

well, no. Then it needs to be an atomic update, or something like it.
The runqueue is a percpu data, the task_group is not. That's why |
choosed to use a rq (and the runqueues are separated between classes).

It all boils down to the fact that | wanted to avoid an atomic update in
this path.

But if you think that would be okay, | could change it. Alternatively, |
could come up with another percpu storage as well, since we're
ultimately just reading it later (and for that we need to iterate on all

cpus anyway).

> Which you could wrap in a nice static inline that disappears when
> CONFIG_CGROUP_PROC_STAT isn't there

That | can do.

>

> Another way to go about this would be to promote (demote?) nr_switches
> to the sched_entity. At which point you know you only need to update

> yours, and conditionally update your parents.

You mean the global one ?
Not sure it will work, because that always refer to the root cgroup...

> But.. that's still gross.. Hmm..

>

>> +out:

>> + rg->curr_tg = task_group(next);

>

> |f you're going to task_group every time anyway you might as well just

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> take it against prev -- then you don't have to cache rg->curr_tg?

>

> Another way to do this would be:

>

> On cfs_rq, rt_rq add:

> int prev_rg_nr_switches, nr_switches

>

> On put_prev_prev_task_fair (against a task)

> cfs_rq_of(prev->se)->prev_rq_nr_switches = rg->nr_switches

>

> On pick_next_task_fair:

> if (cfs_rq_of(prev->se)->prev_rq_nr_switches != rg->nr_switches)
> cfs_rg->nr_switches++;

>

> On aggregating the value for read: +1 if prev_rq_nr_running != rg->nr_running
> [And equivalent for sched_rt]

>

> While this is no nicer (and fractionally more expensive but this is

> never something we'd enable by default), it at least gets the goop out
> of schedule().

At first look this sounds a bit weird to me, but OTOH, this is how a lot

of the stuff is done... All the other statistics in the patch set are
collected this exact same way - because it draws from schedstats, that
always touch the specific rgs, so maybe this gain points for consistency.

I'll give it a shot.

BTW, this means that your first comment about merging cfq and rt is
basically to be disconsidered should | take this route, right ?

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

