
Subject: Re: [PATCH v5 2/2] decrement static keys on real destroy time
Posted by Glauber Costa on Thu, 17 May 2012 03:06:52 GMT
View Forum Message <> Reply to Message

On 05/17/2012 01:06 AM, Andrew Morton wrote:
> On Fri, 11 May 2012 17:11:17 -0300
> Glauber Costa<glommer@parallels.com> wrote:
>
>> We call the destroy function when a cgroup starts to be removed,
>> such as by a rmdir event.
>>
>> However, because of our reference counters, some objects are still
>> inflight. Right now, we are decrementing the static_keys at destroy()
>> time, meaning that if we get rid of the last static_key reference,
>> some objects will still have charges, but the code to properly
>> uncharge them won't be run.
>>
>> This becomes a problem specially if it is ever enabled again, because
>> now new charges will be added to the staled charges making keeping
>> it pretty much impossible.
>>
>> We just need to be careful with the static branch activation:
>> since there is no particular preferred order of their activation,
>> we need to make sure that we only start using it after all
>> call sites are active. This is achieved by having a per-memcg
>> flag that is only updated after static_key_slow_inc() returns.
>> At this time, we are sure all sites are active.
>>
>> This is made per-memcg, not global, for a reason:
>> it also has the effect of making socket accounting more
>> consistent. The first memcg to be limited will trigger static_key()
>> activation, therefore, accounting. But all the others will then be
>> accounted no matter what. After this patch, only limited memcgs
>> will have its sockets accounted.
>>
>> ...
>>
>> @@ -107,10 +104,31 @@ static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
>> 		tcp->tcp_prot_mem[i] = min_t(long, val>> PAGE_SHIFT,
>> 					 net->ipv4.sysctl_tcp_mem[i]);
>>
>> -	if (val == RESOURCE_MAX&& old_lim != RESOURCE_MAX)
>> -		static_key_slow_dec(&memcg_socket_limit_enabled);
>> -	else if (old_lim == RESOURCE_MAX&& val != RESOURCE_MAX)
>> -		static_key_slow_inc(&memcg_socket_limit_enabled);
>> +	if (val == RESOURCE_MAX)
>> +		cg_proto->active = false;
>> +	else if (val != RESOURCE_MAX) {

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10816&goto=46395#msg_46395
https://new-forum.openvz.org/index.php?t=post&reply_to=46395
https://new-forum.openvz.org/index.php

>> +		/*
>> +		 * ->activated needs to be written after the static_key update.
>> +		 * This is what guarantees that the socket activation function
>> +		 * is the last one to run. See sock_update_memcg() for details,
>> +		 * and note that we don't mark any socket as belonging to this
>> +		 * memcg until that flag is up.
>> +		 *
>> +		 * We need to do this, because static_keys will span multiple
>> +		 * sites, but we can't control their order. If we mark a socket
>> +		 * as accounted, but the accounting functions are not patched in
>> +		 * yet, we'll lose accounting.
>> +		 *
>> +		 * We never race with the readers in sock_update_memcg(), because
>> +		 * when this value change, the code to process it is not patched in
>> +		 * yet.
>> +		 */
>> +		if (!cg_proto->activated) {
>> +			static_key_slow_inc(&memcg_socket_limit_enabled);
>> +			cg_proto->activated = true;
>> +		}
>
> If two threads run this code concurrently, they can both see
> cg_proto->activated==false and they will both run
> static_key_slow_inc().
>
> Hopefully there's some locking somewhere which prevents this, but it is
> unobvious. We should comment this, probably at the cg_proto.activated
> definition site. Or we should fix the bug ;)
>
If that happens, locking in static_key_slow_inc will prevent any damage.
My previous version had explicit code to prevent that, but we were
pointed out that this is already part of the static_key expectations, so
that was dropped.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

