
Subject: Re: [PATCH 17/23] kmem controller charge/uncharge infrastructure
Posted by Frederic Weisbecker on Fri, 27 Apr 2012 12:22:22 GMT
View Forum Message <> Reply to Message

On Wed, Apr 25, 2012 at 10:56:16AM +0900, KAMEZAWA Hiroyuki wrote:
> (2012/04/24 23:22), Frederic Weisbecker wrote:
>
> > On Mon, Apr 23, 2012 at 03:25:59PM -0700, David Rientjes wrote:
> >> On Sun, 22 Apr 2012, Glauber Costa wrote:
> >>
> >>> +/*
> >>> + * Return the kmem_cache we're supposed to use for a slab allocation.
> >>> + * If we are in interrupt context or otherwise have an allocation that
> >>> + * can't fail, we return the original cache.
> >>> + * Otherwise, we will try to use the current memcg's version of the cache.
> >>> + *
> >>> + * If the cache does not exist yet, if we are the first user of it,
> >>> + * we either create it immediately, if possible, or create it asynchronously
> >>> + * in a workqueue.
> >>> + * In the latter case, we will let the current allocation go through with
> >>> + * the original cache.
> >>> + *
> >>> + * This function returns with rcu_read_lock() held.
> >>> + */
> >>> +struct kmem_cache *__mem_cgroup_get_kmem_cache(struct kmem_cache *cachep,
> >>> +					 gfp_t gfp)
> >>> +{
> >>> +	struct mem_cgroup *memcg;
> >>> +	int idx;
> >>> +
> >>> +	gfp |= cachep->allocflags;
> >>> +
> >>> +	if ((current->mm == NULL))
> >>> +		return cachep;
> >>> +
> >>> +	if (cachep->memcg_params.memcg)
> >>> +		return cachep;
> >>> +
> >>> +	idx = cachep->memcg_params.id;
> >>> +	VM_BUG_ON(idx == -1);
> >>> +
> >>> +	memcg = mem_cgroup_from_task(current);
> >>> +	if (!mem_cgroup_kmem_enabled(memcg))
> >>> +		return cachep;
> >>> +
> >>> +	if (rcu_access_pointer(memcg->slabs[idx]) == NULL) {
> >>> +		memcg_create_cache_enqueue(memcg, cachep);
> >>> +		return cachep;

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10743&goto=46149#msg_46149
https://new-forum.openvz.org/index.php?t=post&reply_to=46149
https://new-forum.openvz.org/index.php

> >>> +	}
> >>> +
> >>> +	return rcu_dereference(memcg->slabs[idx]);
> >>> +}
> >>> +EXPORT_SYMBOL(__mem_cgroup_get_kmem_cache);
> >>> +
> >>> +void mem_cgroup_remove_child_kmem_cache(struct kmem_cache *cachep, int id)
> >>> +{
> >>> +	rcu_assign_pointer(cachep->memcg_params.memcg->slabs[id], NULL);
> >>> +}
> >>> +
> >>> +bool __mem_cgroup_charge_kmem(gfp_t gfp, size_t size)
> >>> +{
> >>> +	struct mem_cgroup *memcg;
> >>> +	bool ret = true;
> >>> +
> >>> +	rcu_read_lock();
> >>> +	memcg = mem_cgroup_from_task(current);
> >>
> >> This seems horribly inconsistent with memcg charging of user memory since
> >> it charges to p->mm->owner and you're charging to p. So a thread attached
> >> to a memcg can charge user memory to one memcg while charging slab to
> >> another memcg?
> >
> > Charging to the thread rather than the process seem to me the right behaviour:
> > you can have two threads of a same process attached to different cgroups.
> >
> > Perhaps it is the user memory memcg that needs to be fixed?
> >
>
> There is a problem of OOM-Kill.
> To free memory by killing process, 'mm' should be released by kill.
> So, oom-killer just finds a leader of process.
>
> Assume A process X consists of thread A, B and A is thread-group-leader.
>
> Put thread A into cgroup/Gold
> thread B into cgroup/Silver.
>
> If we do accounting based on threads, we can't do anything at OOM in cgroup/Silver.
> An idea 'Killing thread-A to kill thread-B'..... breaks isolation.

Right. But then if one wanted true isolation without worrying about such
side effect, he would avoid to scatter a thread group across more than one
memcg.

>
> As far as resources used by process, I think accounting should be done per process.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> It's not tied to thread.

Yep, makes sense. Especially as thread B might free memory allocated by thread A.
Maintaining a per thread granularity would create too much mess.

> About kmem, if we count task_struct, page tables, etc...which can be freed by
> OOM-Killer i.e. it's allocated for 'process', should be aware of OOM problem.
> Using mm->owner makes sense to me until someone finds a great idea to handle
> OOM situation rather than task killing.

kmem is different because the memory allocated is in essence available to every
threads. Because this becomes a global resource, I don't find the accounting to p->mm->owner
more relevant than to p.

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

