
Subject: Re: [PATCH v4 1/3] make jump_labels wait while updates are in place
Posted by Steven Rostedt on Fri, 27 Apr 2012 00:43:06 GMT
View Forum Message <> Reply to Message

On Thu, Apr 26, 2012 at 07:51:05PM -0300, Glauber Costa wrote:
> In mem cgroup, we need to guarantee that two concurrent updates
> of the jump_label interface wait for each other. IOW, we can't have
> other updates returning while the first one is still patching the
> kernel around, otherwise we'll race.

But it shouldn't. The code as is should prevent that.

>
> I believe this is something that can fit well in the static branch
> API, without noticeable disadvantages:
>
> * in the common case, it will be a quite simple lock/unlock operation
> * Every context that calls static_branch_slow* already expects to be
> in sleeping context because it will mutex_lock the unlikely case.
> * static_key_slow_inc is not expected to be called in any fast path,
> otherwise it would be expected to have quite a different name. Therefore
> the mutex + atomic combination instead of just an atomic should not kill
> us.
>
> Signed-off-by: Glauber Costa <glommer@parallels.com>
> CC: Tejun Heo <tj@kernel.org>
> CC: Li Zefan <lizefan@huawei.com>
> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> CC: Michal Hocko <mhocko@suse.cz>
> CC: Ingo Molnar <mingo@elte.hu>
> CC: Jason Baron <jbaron@redhat.com>
> ---
> kernel/jump_label.c | 21 +++++++++++----------
> 1 files changed, 11 insertions(+), 10 deletions(-)
>
> diff --git a/kernel/jump_label.c b/kernel/jump_label.c
> index 4304919..5d09cb4 100644
> --- a/kernel/jump_label.c
> +++ b/kernel/jump_label.c
> @@ -57,17 +57,16 @@ static void jump_label_update(struct static_key *key, int enable);
>
> void static_key_slow_inc(struct static_key *key)
> {
> +	jump_label_lock();
> 	if (atomic_inc_not_zero(&key->enabled))
> -		return;

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2184
https://new-forum.openvz.org/index.php?t=rview&th=10770&goto=46143#msg_46143
https://new-forum.openvz.org/index.php?t=post&reply_to=46143
https://new-forum.openvz.org/index.php

If key->enabled is not zero, there's nothing to be done. As the jump
label has already been enabled. Note, the key->enabled doesn't get set
until after the jump label is updated. Thus, if two tasks were to come
in, they both would be locked on the jump_label_lock().

> +		goto out;
>
> -	jump_label_lock();
> -	if (atomic_read(&key->enabled) == 0) {
> -		if (!jump_label_get_branch_default(key))
> -			jump_label_update(key, JUMP_LABEL_ENABLE);
> -		else
> -			jump_label_update(key, JUMP_LABEL_DISABLE);
> -	}
> +	if (!jump_label_get_branch_default(key))
> +		jump_label_update(key, JUMP_LABEL_ENABLE);
> +	else
> +		jump_label_update(key, JUMP_LABEL_DISABLE);
> 	atomic_inc(&key->enabled);
> +out:
> 	jump_label_unlock();
> }
> EXPORT_SYMBOL_GPL(static_key_slow_inc);
> @@ -75,10 +74,11 @@ EXPORT_SYMBOL_GPL(static_key_slow_inc);
> static void __static_key_slow_dec(struct static_key *key,
> 		unsigned long rate_limit, struct delayed_work *work)
> {
> -	if (!atomic_dec_and_mutex_lock(&key->enabled, &jump_label_mutex)) {
> +	jump_label_lock();
> +	if (atomic_dec_and_test(&key->enabled)) {
> 		WARN(atomic_read(&key->enabled) < 0,
> 		 "jump label: negative count!\n");
> -		return;

Here, it is similar. If enabled is > 1, it wouldn't need to do anything,
thus it would dec the counter and return. But if it were one, then the
lock would be taken. and set to zero. There shouldn't be a case where
two tasks came in to set it less than zero (then something is
unbalanced).

Are you hitting the WARN_ON?

-- Steve

> +		goto out;
> 	}
>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 	if (rate_limit) {
> @@ -90,6 +90,7 @@ static void __static_key_slow_dec(struct static_key *key,
> 		else
> 			jump_label_update(key, JUMP_LABEL_ENABLE);
> 	}
> +out:
> 	jump_label_unlock();
> }
>
> --
> 1.7.7.6

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

