
Subject: Re: [PATCH v2 4/5] don't take cgroup_mutex in destroy()
Posted by Li Zefan on Wed, 25 Apr 2012 08:01:03 GMT
View Forum Message <> Reply to Message

Glauber Costa wrote:

> On 04/23/2012 11:31 PM, KAMEZAWA Hiroyuki wrote:
>> (2012/04/24 4:37), Glauber Costa wrote:
>>
>>> Most of the destroy functions are only doing very simple things
>>> like freeing memory.
>>>
>>> The ones who goes through lists and such, already use its own
>>> locking for those.
>>>
>>> * The cgroup itself won't go away until we free it, (after destroy)
>>> * The parent won't go away because we hold a reference count
>>> * There are no more tasks in the cgroup, and the cgroup is declared
>>> dead (cgroup_is_removed() == true)
>>>
>>> [v2: don't cgroup_lock the freezer and blkcg]
>>>
>>> Signed-off-by: Glauber Costa<glommer@parallels.com>
>>> CC: Tejun Heo<tj@kernel.org>
>>> CC: Li Zefan<lizefan@huawei.com>
>>> CC: Kamezawa Hiroyuki<kamezawa.hiroyu@jp.fujitsu.com>
>>> CC: Vivek Goyal<vgoyal@redhat.com>
>>> ---
>>> kernel/cgroup.c | 9 ++++-----
>>> 1 files changed, 4 insertions(+), 5 deletions(-)
>>>
>>> diff --git a/kernel/cgroup.c b/kernel/cgroup.c
>>> index 932c318..976d332 100644
>>> --- a/kernel/cgroup.c
>>> +++ b/kernel/cgroup.c
>>> @@ -869,13 +869,13 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode)
>>> 		 * agent */
>>> 		synchronize_rcu();
>>>
>>> -		mutex_lock(&cgroup_mutex);
>>> 		/*
>>> 		 * Release the subsystem state objects.
>>> 		 */
>>> 		for_each_subsys(cgrp->root, ss)
>>> 			ss->destroy(cgrp);
>>>
>>> +		mutex_lock(&cgroup_mutex);
>>> 		cgrp->root->number_of_cgroups--;

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=10751&goto=46074#msg_46074
https://new-forum.openvz.org/index.php?t=post&reply_to=46074
https://new-forum.openvz.org/index.php

>>> 		mutex_unlock(&cgroup_mutex);
>>>
>>> @@ -3994,13 +3994,12 @@ static long cgroup_create(struct cgroup *parent, struct dentry
*dentry,
>>>
>>> err_destroy:
>>>
>>> +	mutex_unlock(&cgroup_mutex);
>>> 	for_each_subsys(root, ss) {
>>> 		if (cgrp->subsys[ss->subsys_id])
>>> 			ss->destroy(cgrp);
>>> 	}
>>>
>>> -	mutex_unlock(&cgroup_mutex);
>>> -
>>> 	/* Release the reference count that we took on the superblock */
>>> 	deactivate_super(sb);
>>>
>>> @@ -4349,9 +4348,9 @@ int __init_or_module cgroup_load_subsys(struct cgroup_subsys
*ss)
>>> 		int ret = cgroup_init_idr(ss, css);
>>> 		if (ret) {
>>> 			dummytop->subsys[ss->subsys_id] = NULL;
>>> +			mutex_unlock(&cgroup_mutex);
>>> 			ss->destroy(dummytop);
>>> 			subsys[i] = NULL;
>>> -			mutex_unlock(&cgroup_mutex);
>>> 			return ret;
>>> 		}
>>> 	}
>>> @@ -4447,10 +4446,10 @@ void cgroup_unload_subsys(struct cgroup_subsys *ss)
>>> 	 * pointer to find their state. note that this also takes care of
>>> 	 * freeing the css_id.
>>> 	 */
>>> +	mutex_unlock(&cgroup_mutex);
>>> 	ss->destroy(dummytop);
>>> 	dummytop->subsys[ss->subsys_id] = NULL;
>>>
>>
>> I'm not fully sure but...dummytop->subsys[] update can be done without locking ?
>>
> I don't see a reason why updates to subsys[] after destruction shouldn't
> be safe. But maybe I am wrong.
>
> Tejun? Li?
>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

It's safe for dummpytop->subsys[], but it makes the code a bit subtle.

The worst part is, it's not safe to NULLify subsys[i] without cgroup_mutex. It should be
ok to do that before calling ->destroy(), but again the code becomes a bit subtler.

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

