Subject: Re: [PATCH 3/3] decrement static keys on real destroy time
Posted by KAMEZAWA Hiroyuki on Fri, 20 Apr 2012 07:38:49 GMT

View Forum Message <> Reply to Message

(2012/04/20 7:49), Glauber Costa wrote:

> We call the destroy function when a cgroup starts to be removed,

> such as by a rmdir event.

>

> However, because of our reference counters, some objects are still
> inflight. Right now, we are decrementing the static_keys at destroy()
> time, meaning that if we get rid of the last static_key reference,

> some objects will still have charges, but the code to properly

> uncharge them won't be run.

>

> This becomes a problem specially if it is ever enabled again, because
> now new charges will be added to the staled charges making keeping
> it pretty much impossible.

>

> We just need to be careful with the static branch activation:

> since there is no particular preferred order of their activation,

> we need to make sure that we only start using it after all

> call sites are active. This is achieved by having a per-memcg

> flag that is only updated after static_key slow _inc() returns.

> At this time, we are sure all sites are active.

>

> This is made per-memcg, not global, for a reason:

> it also has the effect of making socket accounting more

> consistent. The first memcg to be limited will trigger static_key()

> activation, therefore, accounting. But all the others will then be

> accounted no matter what. After this patch, only limited memcgs

> will have its sockets accounted.

>

> [v2: changed a tcp limited flag for a generic proto limited flag ]

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

>
> include/net/sock.h | 9 +++++++

> mm/memcontrol.c | 20 +++++++++++++++-
>

> 3files changed, 72 insertions(+), 9 deletions(-)

>

> diff --git a/include/net/sock.h b/include/net/sock.h

> index b3ebe6b..c5a2010 100644

> --- a/include/net/sock.h

> +++ b/include/net/sock.h

> @@ -914,6 +914,15 @@ struct cg_proto {

net/ipv4/tcp_memcontrol.c | 52 +++++++++++++++++++++H++H+ A+

Page 1 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=10732&goto=45961#msg_45961
https://new-forum.openvz.org/index.php?t=post&reply_to=45961
https://new-forum.openvz.org/index.php

> int *memory_pressure;

> long *sysctl_mem;

> [*

>+ * active means it is currently active, and new sockets should
>+ * be assigned to cgroups.

>+ *

>+ * activated means it was ever activated, and we need to

>+ * disarm the static keys on destruction

>+ %

>+ bool activated;

> + bool active;

>+ [*

> *memcgq field is used to find which memcg we belong directly
> * Each memcg struct can hold more than one cg_proto, so container_of
> *won't really cut.

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index 7832b4d..01d25a0 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -404,6 +404,7 @@ void sock_update_memcg(struct sock *sk)
> {

> if (mem_cgroup_sockets_enabled) {

> struct mem_cgroup *memcg;

> + struct cg_proto *cg_proto;

>

> BUG_ON(Isk->sk_prot->proto_cgroup);

>

> @@ -423,9 +424,10 @@ void sock_update_memcg(struct sock *sk)
>

> rcu_read_lock();

> memcg = mem_cgroup_from_task(current);

> - if (Imem_cgroup_is_root(memcg)) {

>+ cg_proto = sk->sk_prot->proto_cgroup(memcg);

>+ if (fmem_cgroup_is_root(memcg) && cg_proto->active) {

>

> mem_cgroup_get(memcg);
> - sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
>+ sk->sk_cgrp = cg_proto;

>}

Is this correct ? cg_proto->active can be true before all jump_labels are
patched, then we can loose accounting. That will cause underflow of
res_countner.

Page 2 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

cg_proto->active should be set after jump_label modification.
Then, things will work, | guess.

Thanks,
-Kame

> rcu_read_unlock();

>}

> @@ -442,6 +444,14 @@ void sock_release_memcg(struct sock *sk)
> }

>}

>

> +static void disarm_static_keys(struct mem_cgroup *memcg)

> +{

> +#ifdef CONFIG_INET

> + if (memcg->tcp_mem.cg_proto.activated)

> + static_key_slow_dec(&memcg_socket_limit_enabled);

> +#endif

> +}

>+

> #ifdef CONFIG_INET

> struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)

> {

> @@ -452,6 +462,11 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
>}

> EXPORT_SYMBOL(tcp_proto_cgroup);

> #endif * CONFIG_INET */

> t+#else

> +static inline void disarm_static_keys(struct mem_cgroup *memcg)
>+

> +§

>+

> #endif * CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>

> static void drain_all_stock_async(struct mem_cgroup *memcg);

> @@ -4883,6 +4898,7 @@ static void __mem_cgroup_put(struct mem_cgroup *memcg, int
count)

> {

> if (atomic_sub_and_test(count, &memcg->refcnt)) {

> struct mem_cgroup *parent = parent_mem_cgroup(memcg);

>+ disarm_static_keys(memcg);

> _ mem_cgroup_free(memcg);

> if (parent)

> mem_cgroup_put(parent);

> diff --git a/net/ipv4/tcp_memcontrol.c b/net/ipv4/tcp_memcontrol.c

Page 3 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> index 1517037..d02573a 100644

> --- a/net/ipv4/tcp_memcontrol.c

> +++ b/net/ipv4/tcp_memcontrol.c

> @@ -54,6 +54,8 @@ int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys
*sS)

> cg_proto->sysctl_mem = tcp->tcp_prot_mem;

> cg_proto->memory_allocated = &tcp->tcp_memory_allocated;
> cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated;
> + cg_proto->active = false;

> + cg_proto->activated = false;

> cg_proto->memcg = memcg;

>

> return O;

> @@ -74,12 +76,23 @@ void tcp_destroy_cgroup(struct mem_cgroup *memcg)
> percpu_counter_destroy(&tcp->tcp_sockets_allocated);

>

> val =res_counter_read u64(&tcp->tcp_memory_allocated, RES_LIMIT);
> -

> - if (val '= RESOURCE_MAX)

> - static_key slow_dec(&memcg_socket_limit_enabled);

>}

> EXPORT_SYMBOL(tcp_destroy_cgroup);

>

> +[*

>+ * This is to prevent two writes arriving at the same time

>+ * at kmem.tcp.limit_in_bytes.

>4 %

>+ * There is a race at the first time we write to this file:

>+ *

> + * - cg_proto->activated == false for all writers.

>+ * - They all do a static_key_slow_inc().

>+ * - When we are finally read to decrement the static_keys,
>+ * we'll do it only once per activated cgroup. So we won't

>+ * be able to disable it.

>+ %/

> +static DEFINE_MUTEX(tcp_set_limit_mutex);

>+

> static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
>

> struct net *net = current->nsproxy->net_ns;

> @@ -107,10 +120,35 @@ static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
> tcp->tep_prot_mem|i] = min_t(long, val >> PAGE_SHIFT,

> net->ipv4.sysctl_tcp_mem[i]);

>

> - if (val == RESOURCE_MAX && old_lim = RESOURCE_MAX)

> - static_key_slow_dec(&memcg_socket_limit_enabled);

> - else if (old_lim == RESOURCE_MAX && val = RESOURCE_MAX)

> - static_key_slow_inc(&memcg_socket_limit_enabled);

Page 4 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> + if (val == RESOURCE_MAX)

>+ cg_proto->active = false;

> + else if (val = RESOURCE_MAX) {

>+ cg_proto->active = true;

>+

>+

>+ [*

>+ *->activated needs to be written after the static_key update.

>+ * This is what guarantees that the socket activation function

>+ * jsthe last one to run. See sock_update _memcg() for detalils,
>+ * and note that we don't mark any socket as belonging to this

>+ * memcg until that flag is up.

>4+ ¥

>+ * We need to do this, because static_keys will span multiple

>+ * gites, but we can't control their order. If we mark a socket

>+ * as accounted, but the accounting functions are not patched in
>+ * yet, we'll lose accounting.

>+ ¥

>+ * We never race with the readers in sock_update_memcg(), because
>+ * when this value change, the code to process it is not patched in
>+ * yet.

>+ ¥

>+ mutex_lock(&tcp_set_limit_mutex);

> + if (Icg_proto->activated) {

>+ static_key_ slow_inc(&memcg_socket_limit_enabled);
>+ cg_proto->activated = true;

>+ }

>+ mutex_unlock(&tcp_set_limit_mutex);

>+}

>

> return O;

>}

Page 5 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

