
Subject: Re: [PATCH v2 02/13] memcg: Kernel memory accounting infrastructure.
Posted by KAMEZAWA Hiroyuki on Wed, 14 Mar 2012 00:15:26 GMT
View Forum Message <> Reply to Message

On Tue, 13 Mar 2012 14:37:30 +0400
Glauber Costa <glommer@parallels.com> wrote:

> > After looking codes, I think we need to think
> > whether independent_kmem_limit is good or not....
> >
> > How about adding MEMCG_KMEM_ACCOUNT flag instead of this and use only
> > memcg->res/memcg->memsw rather than adding a new counter, memcg->kmem ?
> >
> > if MEMCG_KMEM_ACCOUNT is set -> slab is accoutned to mem->res/memsw.
> > if MEMCG_KMEM_ACCOUNT is not set -> slab is never accounted.
> >
> > (I think On/Off switch is required..)
> >
> > Thanks,
> > -Kame
> >
>
> This has been discussed before, I can probably find it in the archives
> if you want to go back and see it.
>

Yes. IIUC, we agreed to have independet kmem limit. I just want to think it
again because there are too many proposals and it seems I'm in confusion.

As far as I see, there are ongoing works as
 - kmem limit by 2 guys.
 - hugetlb limit
 - per lru locking (by 2 guys)
 - page cgroup diet (by me, but stops now.)
 - drity-ratio and writeback
 - Tejun's proposal to remove pre_destroy()
 - moving shared resource

I'm thinking what is a simple plan and implementation.
Most of series consists of 10+ patches...

Thank you for your help of clarification.

> But in a nutshell:
>
> 1) Supposing independent knob disappear (I will explain in item 2 why I

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=10578&goto=45517#msg_45517
https://new-forum.openvz.org/index.php?t=post&reply_to=45517
https://new-forum.openvz.org/index.php

> don't want it to), I don't thing a flag makes sense either. *If* we are
> planning to enable/disable this, it might make more sense to put some
> work on it, and allow particular slabs to be enabled/disabled by writing
> to memory.kmem.slabinfo (-* would disable all, +* enable all, +kmalloc*
> enable all kmalloc, etc).
>
seems interesting.

> Alternatively, what we could do instead, is something similar to what
> ended up being done for tcp, by request of the network people: if you
> never touch the limit file, don't bother with it at all, and simply does
> not account. With Suleiman's lazy allocation infrastructure, that should
> actually be trivial. And then again, a flag is not necessary, because
> writing to the limit file does the job, and also convey the meaning well
> enough.
>

Hm.

> 2) For the kernel itself, we are mostly concerned that a malicious
> container may pin into memory big amounts of kernel memory which is,
> ultimately, unreclaimable.

Yes. This is a big problem both to memcg and the whole system.

In my experience, 2000 process shares a 10GB shared memory and eats up
big memory ;(

> In particular, with overcommit allowed
> scenarios, you can fill the whole physical memory (or at least a
> significant part) with those objects, well beyond your softlimit
> allowance, making the creation of further containers impossible.
> With user memory, you can reclaim the cgroup back to its place. With
> kernel memory, you can't.
>
Agreed.

> In the particular example of 32-bit boxes, you can easily fill up a
> large part of the available 1gb kernel memory with pinned memory and
> render the whole system unresponsive.
>
> Never allowing the kernel memory to go beyond the soft limit was one of
> the proposed alternatives. However, it may force you to establish a soft
> limit where one was not previously needed. Or, establish a low soft
> limit when you really need a bigger one.
>

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> All that said, while reading your message, thinking a bit, the following
> crossed my mind:
>
> - We can account the slabs to memcg->res normally, and just store the
> information that this is kernel memory into a percpu counter, as
> I proposed recently.

Ok, then user can see the amount of kernel memory.

> - The knob goes away, and becomes implicit: if you ever write anything
> to memory.kmem.limit_in_bytes, we transfer that memory to a separate
> kmem res_counter, and proceed from there. We can keep accounting to
> memcg->res anyway, just that kernel memory will now have a separate
> limit.

Okay, then,

	kmem_limit < memory.limit < memsw.limit

...seems reasonable to me.
This means, user can specify 'ratio' of kmem in memory.limit.

More consideration will be interesting.

 - We can show the amount of reclaimable kmem by some means ?
 - What happens when a new cgroup created ?
 - Should we have 'ratio' interface in kernel level ?
 - What happens at task moving ?
 - Should we allow per-slab accounting knob in /sys/kernel/slab/xxx ?
 or somewhere ?
 - Should we show per-memcg usage in /sys/kernel/slab/xxx ?
 - Should we have force_empty for kmem (as last resort) ?

With any implementation, my concern is
 - overhead/performance.
 - unreclaimable kmem
 - shared kmem between cgroups.

> - With this scheme, it may not be necessary to ever have a file
> memory.kmem.soft_limit_in_bytes. Reclaim is always part of the normal
> memcg reclaim.
>
Good.

> The outlined above would work for us, and make the whole scheme simpler,
> I believe.

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> What do you think ?

It sounds interesting to me.

Thanks,
-Kame

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

