
Subject: Re: [PATCH] fdset's leakage
Posted by Kirill Korotaev on Tue, 11 Jul 2006 09:05:03 GMT
View Forum Message <> Reply to Message

Andrew,

>>Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().
>>
>>[PATCH] fdset's leakage
>>
>>When found, it is obvious. nfds calculated when allocating fdsets
>>is rewritten by calculation of size of fdtable, and when we are
>>unlucky, we try to free fdsets of wrong size.
>>
>>Found due to OpenVZ resource management (User Beancounters).
>>
>>Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
>>Signed-Off-By: Kirill Korotaev <dev@openvz.org>
>>
>>
>>diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
>>--- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
>>+++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
>>@@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
>> 	} while (nfds <= nr);
>> 	new_fds = alloc_fd_array(nfds);
>> 	if (!new_fds)
>>-		goto out;
>>+		goto out2;
>> 	fdt->fd = new_fds;
>> 	fdt->max_fds = nfds;
>> 	fdt->free_files = NULL;
>> 	return fdt;
>>+out2:
>>+	nfds = fdt->max_fdset;
>> out:
>> 	if (new_openset)
>> 		free_fdset(new_openset, nfds);
>
>
> OK, that was a simple fix. And if we need this fix backported to 2.6.17.x
> then it'd be best to go with the simple fix.
>
> And I think we do need to backport this to 2.6.17.x because NR_OPEN can be
> really big, and vmalloc() is not immortal.
>
> But the code in there is really sick. In all cases we do:
>

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=150
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4464#msg_4464
https://new-forum.openvz.org/index.php?t=post&reply_to=4464
https://new-forum.openvz.org/index.php

> 	free_fdset(foo->open_fds, foo->max_fdset);
> 	free_fdset(foo->close_on_exec, foo->max_fdset);
>
> How much neater and more reliable would it be to do:
>
> 	free_fdsets(foo);
>
> ?
agree. should I prepare a patch?

> Also,
>
> 	nfds = NR_OPEN_DEFAULT;
> 	/*
> 	 * Expand to the max in easy steps, and keep expanding it until
> 	 * we have enough for the requested fd array size.
> 	 */
> 	do {
> #if NR_OPEN_DEFAULT < 256
> 		if (nfds < 256)
> 			nfds = 256;
> 		else
> #endif
> 		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
> 			nfds = PAGE_SIZE / sizeof(struct file *);
> 		else {
> 			nfds = nfds * 2;
> 			if (nfds > NR_OPEN)
> 				nfds = NR_OPEN;
> 		}
> 	} while (nfds <= nr);
>
>
> That's going to take a long time to compute if nr > NR_OPEN. I just fixed
> a similar infinite loop in this function. Methinks this
>
> 	nfds = max(NR_OPEN_DEFAULT, 256);
> 	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
> 	nfds = max(nfds, round_up_pow_of_two(nr + 1));
> 	nfds = min(nfds, NR_OPEN);
>
> is clearer and less buggy. I _think_ it's also equivalent (as long as
> NR_OPEN>256). But please check my logic.
Yeah, I also noticed these nasty loops but was too lazy to bother :)
Too much crap for my nerves :)

Your logic looks fine for me. Do we have already round_up_pow_of_two() function or
should we create it as something like:

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

unsinged long round_up_pow_of_two(unsigned long x)
{
 unsigned long res = 1 << BITS_PER_LONG;
 while (res > x)
 res >>= 1;
 }
 return res << 1;
}

or maybe using:
n = find_first_bit(x);
return res = 1 << n;
(though it depends on endianness IMHO)
?

Thanks,
Kirill

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

