
Subject: Re: [PATCH] fdset's leakage
Posted by Andrew Morton on Tue, 11 Jul 2006 08:01:04 GMT
View Forum Message <> Reply to Message

On Mon, 10 Jul 2006 17:40:51 +0400
Kirill Korotaev <dev@openvz.org> wrote:

> Andrew,
>
> Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().
>
> [PATCH] fdset's leakage
>
> When found, it is obvious. nfds calculated when allocating fdsets
> is rewritten by calculation of size of fdtable, and when we are
> unlucky, we try to free fdsets of wrong size.
>
> Found due to OpenVZ resource management (User Beancounters).
>
> Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
> Signed-Off-By: Kirill Korotaev <dev@openvz.org>
>
>
> diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
> --- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
> +++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
> @@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
> 	} while (nfds <= nr);
> 	new_fds = alloc_fd_array(nfds);
> 	if (!new_fds)
> -		goto out;
> +		goto out2;
> 	fdt->fd = new_fds;
> 	fdt->max_fds = nfds;
> 	fdt->free_files = NULL;
> 	return fdt;
> +out2:
> +	nfds = fdt->max_fdset;
> out:
> 	if (new_openset)
> 		free_fdset(new_openset, nfds);

OK, that was a simple fix. And if we need this fix backported to 2.6.17.x
then it'd be best to go with the simple fix.

And I think we do need to backport this to 2.6.17.x because NR_OPEN can be
really big, and vmalloc() is not immortal.

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4457#msg_4457
https://new-forum.openvz.org/index.php?t=post&reply_to=4457
https://new-forum.openvz.org/index.php

But the code in there is really sick. In all cases we do:

	free_fdset(foo->open_fds, foo->max_fdset);
	free_fdset(foo->close_on_exec, foo->max_fdset);

How much neater and more reliable would it be to do:

	free_fdsets(foo);

?

Also,

	nfds = NR_OPEN_DEFAULT;
	/*
	 * Expand to the max in easy steps, and keep expanding it until
	 * we have enough for the requested fd array size.
	 */
	do {
#if NR_OPEN_DEFAULT < 256
		if (nfds < 256)
			nfds = 256;
		else
#endif
		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
			nfds = PAGE_SIZE / sizeof(struct file *);
		else {
			nfds = nfds * 2;
			if (nfds > NR_OPEN)
				nfds = NR_OPEN;
 		}
	} while (nfds <= nr);

That's going to take a long time to compute if nr > NR_OPEN. I just fixed
a similar infinite loop in this function. Methinks this

	nfds = max(NR_OPEN_DEFAULT, 256);
	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
	nfds = max(nfds, round_up_pow_of_two(nr + 1));
	nfds = min(nfds, NR_OPEN);

is clearer and less buggy. I _think_ it's also equivalent (as long as
NR_OPEN>256). But please check my logic.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

