
Subject: Re: [PATCH v7 00/10] Request for Inclusion: per-cgroup tcp memory
pressure
Posted by Glauber Costa on Mon, 05 Dec 2011 10:28:56 GMT
View Forum Message <> Reply to Message

On 12/05/2011 07:51 AM, KAMEZAWA Hiroyuki wrote:
> On Mon, 5 Dec 2011 07:09:51 -0200
> Glauber Costa<glommer@parallels.com>  wrote:
>
>> On 12/05/2011 12:06 AM, KAMEZAWA Hiroyuki wrote:
>>> On Fri, 2 Dec 2011 16:04:08 -0200
>>> Glauber Costa<glommer@parallels.com>   wrote:
>>>
>>>> On 11/30/2011 12:11 AM, KAMEZAWA Hiroyuki wrote:
>>>>> On Tue, 29 Nov 2011 21:56:51 -0200
>>>>> Glauber Costa<glommer@parallels.com>    wrote:
>>>>>
>>>>>> Hi,
>>>>>>
>>>>>> This patchset implements per-cgroup tcp memory pressure controls. It did not change
>>>>>> significantly since last submission: rather, it just merges the comments Kame had.
>>>>>> Most of them are style-related and/or Documentation, but there are two real bugs he
>>>>>> managed to spot (thanks)
>>>>>>
>>>>>> Please let me know if there is anything else I should address.
>>>>>>
>>>>>
>>>>> After reading all codes again, I feel some strange. Could you clarify ?
>>>>>
>>>>> Here.
>>>>> ==
>>>>> +void sock_update_memcg(struct sock *sk)
>>>>> +{
>>>>> +	/* right now a socket spends its whole life in the same cgroup */
>>>>> +	if (sk->sk_cgrp) {
>>>>> +		WARN_ON(1);
>>>>> +		return;
>>>>> +	}
>>>>> +	if (static_branch(&memcg_socket_limit_enabled)) {
>>>>> +		struct mem_cgroup *memcg;
>>>>> +
>>>>> +		BUG_ON(!sk->sk_prot->proto_cgroup);
>>>>> +
>>>>> +		rcu_read_lock();
>>>>> +		memcg = mem_cgroup_from_task(current);
>>>>> +		if (!mem_cgroup_is_root(memcg))
>>>>> +			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
>>>>> +		rcu_read_unlock();

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10241&goto=44385#msg_44385
https://new-forum.openvz.org/index.php?t=post&reply_to=44385
https://new-forum.openvz.org/index.php


>>>>> ==
>>>>>
>>>>> sk->sk_cgrp is set to a memcg without any reference count.
>>>>>
>>>>> Then, no check for preventing rmdir() and freeing memcgroup.
>>>>>
>>>>> Is there some css_get() or mem_cgroup_get() somewhere ?
>>>>>
>>>>
>>>> There were a css_get in the first version of this patchset. It was
>>>> removed, however, because it was deemed anti-intuitive to prevent rmdir,
>>>> since we can't know which sockets are blocking it, or do anything about
>>>> it. Or did I misunderstand something ?
>>>>
>>>
>>> Maybe I misuderstood. Thank you. Ok, there is no css_get/put and
>>> rmdir() is allowed. But, hmm....what's guarding threads from stale
>>> pointer access ?
>>>
>>> Does a memory cgroup which is pointed by sk->sk_cgrp always exist ?
>>>
>> If I am not mistaken, yes, it will. (Ok, right now it won't)
>>
>> Reason is a cgroup can't be removed if it is empty.
>> To make it empty, you need to move the tasks away.
>>
>> So the sockets will be moved away as well when you do it. So right now
>> they are not, so it would then probably be better to increase a
>> reference count with a comment saying that it is temporary.
>>
>
> I'm sorry if I misunderstand.
>
> At task exit, __fput() will be called against file descriptors, yes.
> __fput() calles f_op->release() =>  inet_release() =>  tcp_close().
>
> But TCP socket may be alive after task exit until it gets down to
> protocol close. For example, until the all message in send buffer
> is acked, socket and tcp connection will not be disappear.
>
> In short, socket's lifetime is different from it's task's.
> So, there may be sockets which are not belongs to any task.
>

Yeah, you're right. I guess this is one more reason for us to just keep 
the memcg reference around.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

