
Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by jacob.jun.pan on Thu, 10 Feb 2011 23:06:33 GMT
View Forum Message <> Reply to Message

On Wed, 9 Feb 2011 19:04:42 -0800
Matt Helsley <matthltc@us.ibm.com> wrote:

> On Tue, Feb 08, 2011 at 05:05:41PM -0800,
> jacob.jun.pan@linux.intel.com wrote:
> > From: Jacob Pan <jacob.jun.pan@linux.intel.com>
> >
> > Freezer subsystem is used to manage batch jobs which can start
> > stop at the same time. However, sometime it is desirable to let
> > the kernel manage the freezer state automatically with a given
> > duty ratio.
> > For example, if we want to reduce the time that backgroup apps
> > are allowed to run we can put them into a freezer subsystem and
> > set the kernel to turn them THAWED/FROZEN at given duty ratio.
> >
> > This patch introduces two file nodes under cgroup
> > freezer.duty_ratio_pct and freezer.period_sec
> >
> > Usage example: set period to be 5 seconds and frozen duty ratio 90%
> > [root@localhost aoa]# echo 90 > freezer.duty_ratio_pct
> > [root@localhost aoa]# echo 5000 > freezer.period_ms
>
> I kept wondering how this was useful when we've got the "cpu"
> subsystem because for some reason "duty cycle" made me think this was
> a scheduling policy knob. In fact, I'm pretty sure it is -- it just
> happens to sometimes reduce power consumption.
>
> Have you tried using the cpu cgroup subsystem's share to see if it can
> have a similar effect?
>
> Can you modify the cpu subsystem to enable this instead of putting it
> into the cgroup freezer subsystem?
>
I replied in other email. basically, CPU subsystem is for RT only so
far. I will give it a try see if it can include non-RT tasks and
perform with CFS.

> The way it oscillates between FROZEN and THAWED also bothers me. The
> oscillations can be described in millisecond granularity so its
> possible that reading and manipulating the freezer state from
> userspace could be largely useless. Also it's not obvious what should
> happen when the state file is written after the duty cycle has been
> set (more below).
>

Page 1 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5148
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=42069#msg_42069
https://new-forum.openvz.org/index.php?t=post&reply_to=42069
https://new-forum.openvz.org/index.php

My intention was to have second granularity.

> Perhaps you could fix that up by introducting another state called
> "DUTY_CYCLE" or something.
>
I did think about that as well. But adding DUTY_CYCLE state kind of
blurs the state machine definition. Since it is can be in THAWED or
FROZEN while in DUTY_CYCLE. But I do need to fix the handling of user
direct control of freezer.state while in oscillation.

> What's the overhead of using the freezer as a scheduling mechanism at
> that granularity? Is it really practical?
>
I agree at ms granularity the overhead is not practical. Like Arjan
said we are looking at much longer time at 20s+, as long as the apps in
the freezer can be kept alive :).

> What happens to these groups using the duty cycle during suspend and
> resume? Presumably they won't be accidentally thawed so long as there
> aren't races between the kernel thread(s) and suspend. I don't think
> we've ever had a kernel thread that could thaw a frozen task before
> (unless it's part of the resume code itself) so I don't think this
> race is covered by existing cgroup freezer code.
>
good point, I need to do some investigation and get back to you.
> Overall I get the feeling this is a scheduling policy knob that
> doesn't "belong" in the cgroup freezer subsystem -- though I don't
> have much beyond the above questions and my personal aesthetic sense
> to go on :).
>
> I think Rafael is maintaining the cgroup freezer subsystem since it
> makes use of the suspend freezer so I've added him to Cc.
>
Thanks for the pointer. As I mentioned in the other reply, cpu cgroup
subsystem might be a more natural fit but we may need to overcome the
hurdle or non-rt and possible scheduling heuristics. I need to
investigate some more.

> >
> > Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
> > ---
> > Documentation/cgroups/freezer-subsystem.txt | 23 +++++
> > kernel/cgroup_freezer.c | 132
> > ++++++++++++++++++++++++++- 2 files changed, 154 insertions(+), 1
> > deletions(-)
> >
> > diff --git a/Documentation/cgroups/freezer-subsystem.txt
> > b/Documentation/cgroups/freezer-subsystem.txt index

Page 2 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > 41f37fe..7f06f05 100644 ---
> > a/Documentation/cgroups/freezer-subsystem.txt +++
> > b/Documentation/cgroups/freezer-subsystem.txt @@ -100,3 +100,26 @@
> > things happens: and returns EINVAL)
> > 	3) The tasks that blocked the cgroup from entering the
> > "FROZEN" state disappear from the cgroup's set of tasks.
> > +
> > +In embedded systems, it is desirable to manage group of
> > applications +for power saving. E.g. tasks that are not in the
> > foreground may be +frozen unfrozen periodically to save power
> > without affecting user
>
> nit: probably should be "frozen and unfrozen periodically"
>
> > +experience. In this case, user/management software can attach tasks
> > +into freezer cgroup then specify duty ratio and period that the
> > +managed tasks are allowed to run.
>
> And presumably the applications either don't care about their power
> consumption, have a bug, or are "malicious" apps -- either way
> assuming cooperation from the applications and knowledgable users
> isn't acceptable.
>
> > +
> > +Usage example:
> > +Assuming freezer cgroup is already mounted, application being
> > managed +are included the "tasks" file node of the given freezer
> > cgroup. +To make the tasks frozen at 90% of the time every 5
> > seconds, do: +
> > +[root@localhost]# echo 90 > freezer.duty_ratio_pct
> > +[root@localhost]# echo 5000 > freezer.period_ms
> > +
> > +After that, the application in this freezer cgroup will only be
> > +allowed to run at the following pattern.
> > + __ __ __
> > + | |<-- 90% frozen -->| | | |
> > +____| |__________________| |__________________| |_____
> > +
> > + |<---- 5 seconds ---->|
> > diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
> > index e7bebb7..5808f28 100644
> > --- a/kernel/cgroup_freezer.c
> > +++ b/kernel/cgroup_freezer.c
> > @@ -21,6 +21,7 @@
> > #include <linux/uaccess.h>
> > #include <linux/freezer.h>
> > #include <linux/seq_file.h>
> > +#include <linux/kthread.h>

Page 3 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> >
> > enum freezer_state {
> > 	CGROUP_THAWED = 0,
> > @@ -28,12 +29,28 @@ enum freezer_state {
> > 	CGROUP_FROZEN,
> > };
> >
> > +enum duty_ratio_params {
> > +	FREEZER_DUTY_RATIO = 0,
> > +	FREEZER_PERIOD,
> > +};
> > +
> > +struct freezer_duty {
> > +	u32 ratio; /* percentage of time frozen */
> > +	u32 period_pct_ms; /* one percent of the period in
> > miliseconds */ +};
> > +
> > struct freezer {
> > 	struct cgroup_subsys_state css;
> > 	enum freezer_state state;
> > +	struct freezer_duty duty;
> > +	struct task_struct *fkh;
> > 	spinlock_t lock; /* protects _writes_ to state */
> > };
> >
> > +static struct task_struct *freezer_task;
> > +static int try_to_freeze_cgroup(struct cgroup *cgroup, struct
> > freezer *freezer); +static void unfreeze_cgroup(struct cgroup
> > *cgroup, struct freezer *freezer); +
> > static inline struct freezer *cgroup_freezer(
> > 		struct cgroup *cgroup)
> > {
> > @@ -63,6 +80,31 @@ int cgroup_freezing_or_frozen(struct task_struct
> > *task) return result;
> > }
> >
> > +static DECLARE_WAIT_QUEUE_HEAD(freezer_wait);
> > +
> > +static int freezer_kh(void *data)
>
> nit: What's "kh"? "Kernel Handler"?
>
I meant kernel thread :)
> > +{
> > +	struct cgroup *cgroup = (struct cgroup *)data;
> > +	struct freezer *freezer = cgroup_freezer(cgroup);
> > +
> > +	do {

Page 4 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +		if (freezer->duty.ratio < 100 &&
> > freezer->duty.ratio > 0 &&
> > +			freezer->duty.period_pct_ms) {
> > +			if (try_to_freeze_cgroup(cgroup, freezer))
> > +				pr_info("cannot freeze\n");
> > +			msleep(freezer->duty.period_pct_ms *
> > +				freezer->duty.ratio);
> > +			unfreeze_cgroup(cgroup, freezer);
> > +			msleep(freezer->duty.period_pct_ms *
> > +				(100 - freezer->duty.ratio));
> > +		} else {
> > +			sleep_on(&freezer_wait);
> > +			pr_debug("freezer thread wake up\n");
> > +		}
> > +	} while (!kthread_should_stop());
> > +	return 0;
> > +}
>
> Seems to me you could avoid the thread-per-cgroup overhead and the
> sleep-loop code by using one timer-per-cgroup. When the timer expires
> you freeze/thaw the cgroup associated with the timer, setup the next
> wakeup timer, and use only one kernel thread to do it all. If you
> use workqueues you might even avoid the single kernel thread.
>
> Seems to me like that'd be a good fit for embedded devices.
>
will try schedule_delayed_work() as Kirill suggested.

> > +
> > /*
> > * cgroups_write_string() limits the size of freezer state strings
> > to
> > * CGROUP_LOCAL_BUFFER_SIZE
> > @@ -150,7 +192,12 @@ static struct cgroup_subsys_state
> > *freezer_create(struct cgroup_subsys *ss, static void
> > freezer_destroy(struct cgroup_subsys *ss, struct cgroup *cgroup)
> > {
> > -	kfree(cgroup_freezer(cgroup));
> > +	struct freezer *freezer;
> > +
> > +	freezer = cgroup_freezer(cgroup);
> > +	if (freezer->fkh)
> > +		kthread_stop(freezer->fkh);
> > +	kfree(freezer);
> > }
> >
> > /*
> > @@ -282,6 +329,16 @@ static int freezer_read(struct cgroup *cgroup,

Page 5 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > struct cftype *cft, return 0;
> > }
> >
> > +static u64 freezer_read_duty_ratio(struct cgroup *cgroup, struct
> > cftype *cft) +{
> > +	return cgroup_freezer(cgroup)->duty.ratio;
> > +}
> > +
> > +static u64 freezer_read_period(struct cgroup *cgroup, struct
> > cftype *cft) +{
> > +	return cgroup_freezer(cgroup)->duty.period_pct_ms * 100;
> > +}
> > +
> > static int try_to_freeze_cgroup(struct cgroup *cgroup, struct
> > freezer *freezer) {
> > 	struct cgroup_iter it;
> > @@ -368,12 +425,85 @@ static int freezer_write(struct cgroup
> > *cgroup, return retval;
> > }
> >
> > +#define FREEZER_KH_PREFIX "freezer_"
> > +static int freezer_write_param(struct cgroup *cgroup, struct
> > cftype *cft,
> > +		u64 val)
> > +{
> > +	struct freezer *freezer;
> > +	char thread_name[32];
> > +	int ret = 0;
> > +
> > +	freezer = cgroup_freezer(cgroup);
> > +
> > +	if (!cgroup_lock_live_group(cgroup))
> > +		return -ENODEV;
> > +
> > +	switch (cft->private) {
> > +	case FREEZER_DUTY_RATIO:
> > +		if (val >= 100 || val < 0) {
> > +			ret = -EINVAL;
> > +			goto exit;
> > +		}
> > +		freezer->duty.ratio = val;
>
> Why can't val == 100? At that point it's always THAWED and no kernel
> thread is necessary (just like at 0 it's always FROZEN and no kernel
> thread is necessary).
the val is percentage of time FROZEN. in that case user can just change
freezer.state to FROZEN.

Page 6 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> > +		break;
> > +	case FREEZER_PERIOD:
> > +		if (val)
> > +			do_div(val, 100);
> > +			freezer->duty.period_pct_ms = val;
>
> Wrong indent level at least. Possible bug?
> Shouldn't you disallow duty.period_pct_ms being set to 0? Then
> userspace can pin a kernel thread at 100% cpu just doing freeze/thaws
> couldn't it?
I will fix that. no need to check val != 0.
>
> > +		break;
> > +	default:
> > +		BUG();
> > +	}
> > +
> > +	/* start/stop management kthread as needed, the rule is
> > that
> > +	 * if both duty ratio and period values are zero, then no
> > management
> > +	 * kthread is created. when both are non-zero, we create a
> > kthread
> > +	 * for the cgroup. When user set zero to duty ratio and
> > period again
> > +	 * the kthread is stopped.
> > +	 */
> > +	if (freezer->duty.ratio && freezer->duty.period_pct_ms) {
> > +		if (!freezer->fkh) {
> > +			snprintf(thread_name, 32, "%s%s",
> > FREEZER_KH_PREFIX,
> > +				cgroup->dentry->d_name.name);
> > +			freezer->fkh = kthread_run(freezer_kh,
> > (void *)cgroup,
> > +						thread_name);
> > +			if (IS_ERR(freezer_task)) {
> > +				pr_err("create %s failed\n",
> > thread_name);
> > +				ret = PTR_ERR(freezer_task);
> > +				goto exit;
> > +			}
> > +		} else
> > +			wake_up(&freezer_wait);
> > +	} else if ((!freezer->duty.ratio
> > || !freezer->duty.period_pct_ms) &&
> > +		freezer->fkh) {
> > +			kthread_stop(freezer->fkh);

Page 7 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +			freezer->fkh = NULL;
> > +	}
> > +
> > +exit:
> > +	cgroup_unlock();
> > +	return ret;
> > +}
> > +
> > static struct cftype files[] = {
> > 	{
> > 		.name = "state",
> > 		.read_seq_string = freezer_read,
> > 		.write_string = freezer_write,
>
> It's not clear what should happen when userspace writes the state
> file after writing a duty_ratio_pct.
>
> If the new state file write takes priority then:
> 	Writing THAWED to the state should set duty_ratio_pct to 100.
> 	Writing FROZEN to the state should set it to 0.
>
> 	This means existing code will get the behavior it expects.
>
> Else, if you want duty_ratio_pct to take priority then you ought to
> make the state file read-only when duty_ratio_pct is set. Otherwise
> existing userspace code will happily chug along without noticing that
> their groups aren't doing what they expected. This is also another
> good reason to introduce a new state as suggested above (with the
> tenative name "DUTY_CYCLE").
I like the former logic, where freezer.state takes precedence. As i
mentioned before, my concern is that DUTY_CYCLE state overlaps THAWED
and FROZEN states.

Thanks.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 8 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

