Subject: Re: [PATCH 4/5] blk-throttle: track buffered and anonymous pages
Posted by Vivek Goyal on Wed, 23 Feb 2011 00:07:19 GMT

View Forum Message <> Reply to Message

On Wed, Feb 23, 2011 at 12:05:34AM +0100, Andrea Righi wrote:

> On Tue, Feb 22, 2011 at 04:00:30PM -0500, Vivek Goyal wrote:

> > 0On Tue, Feb 22, 2011 at 06:12:55PM +0100, Andrea Righi wrote:

> > > Add the tracking of buffered (writeback) and anonymous pages.

>>>

> > > Dirty pages in the page cache can be processed asynchronously by the
> > > per-bdi flusher kernel threads or by any other thread in the system,

> > > according to the writeback policy.

>>>

> > > For this reason the real writes to the underlying block devices may

> > > occur in a different 10 context respect to the task that originally

> > > generated the dirty pages involved in the 10 operation. This makes

> > > the tracking and throttling of writeback 10 more complicate respect to

> > > the synchronous IO from the blkio controller's point of view.

>>>

> > > The idea is to save the cgroup owner of each anonymous page and dirty
> > > page in page cache. A page is associated to a cgroup the first time it

> > > js dirtied in memory (for file cache pages) or when it is set as

> > > swap-backed (for anonymous pages). This information is stored using the
> > > page_cgroup functionality.

>>>

> > > Then, at the block layer, it is possible to retrieve the throttle group

> > > |ooking at the bio_page(bio). If the page was not explicitly associated

> > > to any cgroup the IO operation is charged to the current task/cgroup, as
> > > jt was done by the previous implementation.

>>>

> > > Signed-off-by: Andrea Righi <arighi@develer.com>

>>> ---

> > > block/blk-throttle.c | 87 ++++++++++++++++++++++++++++++++++H++H+++H++HH+ -
> > > include/linux/blkdev.h | 26 ++++++++++++++-

>>> 2 files changed, 111 insertions(+), 2 deletions(-)

>>>

> > > diff --git a/block/blk-throttle.c b/block/blk-throttle.c

> > > index 9ad3dle..a50ee04 100644

> > > --- a/block/blk-throttle.c

> > > +++ b/block/blk-throttle.c

>>>@@ -8,6 +8,10 @@

> > > #include <linux/slab.h>

> > > #include <linux/blkdev.h>

> > > #include <linux/bio.h>

> > > +#include <linux/memcontrol.h>

> > > +#include <linux/mm_inline.h>

> > > +#include <linux/pagemap.h>

> > > +#include <linux/page_cgroup.h>

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2331
https://new-forum.openvz.org/index.php?t=rview&th=9454&goto=41836#msg_41836
https://new-forum.openvz.org/index.php?t=post&reply_to=41836
https://new-forum.openvz.org/index.php

> > > #include <linux/blktrace api.h>

> > > #include <linux/blk-cgroup.h>

>>>

>>> @@ -221,6 +225,85 @@ done:

>>> return tg;

>>> }

>>>

> > > +static inline bool is_kernel_io(void)

>> >+

> > > + return !(current->flags & (PF_KTHREAD | PF_KSWAPD | PF_MEMALLOC));
>> > +}

>>>+

> > > +static int throtl_set_page_owner(struct page *page, struct mm_struct *mm)
>> >+

> > > + struct blkio_cgroup *blkcg;

> > > + unsigned short id = 0;

>>>+

>> > + if (blkio_cgroup_disabled())

>>>+ return O;

> > >+ if (Imm)

> > >+ goto out;

>>>+rcu_read_lock();

> > > + blkcg = task_to_blkio_cgroup(rcu_dereference(mm->owner));
> > > + if (likely(blkcg))

>> >+ id = css_id(&blkcg->css);

>> > +rcu_read_unlock();

> > > +out:

> > > + return page_cgroup_set_owner(page, id);

>> > +}

>>>+

> > > +int blk_throtl_set_anonpage_owner(struct page *page, struct mm_struct *mm)
>> >+

> > > + return throtl_set_page_owner(page, mm);

>> > +}

> > > +EXPORT_SYMBOL(blk_throtl_set anonpage_owner);
>>>+

> > > +int blk_throtl_set_filepage owner(struct page *page, struct mm_struct *mm)
>>>+H

> > > +if (is_kernel_io() || !page_is_file_cache(page))

>>>+ return O;

> > > + return throtl_set_page_owner(page, mm);

>> > +}

> > > +EXPORT_SYMBOL(blk_throtl_set_filepage_owner);

> >

> > Why are we exporting all these symbols?

>

> Right. Probably a single one is enough:

>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> int blk_throtl_set_page_ owner(struct page *page,
> struct mm_struct *mm, bool anon);

Who is going to use this single export? Which module?

Thanks
Vivek

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

