Subject: Re: [PATCH 2/9] security: Make capabilities relative to the user
namespace.
Posted by akpm on Fri, 18 Feb 2011 23:59:18 GMT

View Forum Message <> Reply to Message

On Thu, 17 Feb 2011 15:03:06 +0000
"Serge E. Hallyn" <serge@hallyn.com> wrote:

> - Introduce ns_capable to test for a capability in a non-default

> user namespace.

> - Teach cap_capable to handle capabilities in a non-default

> user namespace.

>

> The motivation is to get to the unprivileged creation of new

> namespaces. It looks like this gets us 90% of the way there, with

> only potential uid confusion issues left.

>

> | still need to handle getting all caps after creation but otherwise |

> think | have a good starter patch that achieves all of your goals.

>

>

> ...

>

> --- a/include/linux/capability.h

> +++ b/include/linux/capability.h

> @@ -544,7 +544,7 @@ extern const kernel_cap_t___cap_init_eff_set;
> *

> * Note that this does not set PF_SUPERPRIV on the task.

> %

> -#define has_capability(t, cap) (security_real_capable((t), (cap)) == 0)
> +#define has_capability(t, cap) (security_real_capable((t), &init_user_ns, (cap)) == 0)
>

> /**

> * has_capability_noaudit - Determine if a task has a superior capability available (unaudited)
> @@ -558,9 +558,15 @@ extern const kernel_cap_t __ cap_init_eff_set;
> * Note that this does not set PF_SUPERPRIV on the task.

> %/

> #define has_capability _noaudit(t, cap) \

> - (security_real_capable_noaudit((t), (cap)) == 0)

> + (security_real_capable_noaudit((t), &init_user_ns, (cap)) == 0)

>

> +struct user_namespace;

> +extern struct user_namespace init_user_ns;

Two icky-should-be-written-in-C macros which reference init_user_ns,
followed by the declaration of init_user_ns and its type. Declarations
which duplicate those in other header files. It's ripe for some
upcleaning, methinks?

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=9442&goto=41779#msg_41779
https://new-forum.openvz.org/index.php?t=post&reply_to=41779
https://new-forum.openvz.org/index.php

Also, please ensure that the forward struct declarations are all at
top-of-file (as in include/linux/security.h). Otherwise we can end up
accumulating multiple forward declarations of the same thing in the one
file.

> extern int capable(int cap);

> +extern int ns_capable(struct user_namespace *ns, int cap);
> +extern int task_ns_capable(struct task_struct *t, int cap);
>+

> +#define nsown_capable(cap) (ns_capable(current_user_ns(), (cap)))
macroitis!

> @@ -301,15 +302,42 @@ error:

> %

> int capable(int cap)

> {

> + return ns_capable(&init_user_ns, cap);

> +}

> +EXPORT_SYMBOL(capable);

>+

> +[**

>+ * ns_capable - Determine if the current task has a superior capability in effect
>+ * @ns: The usernamespace we want the capability in

>+ * @cap: The capability to be tested for

>+ *

> + * Return true if the current task has the given superior capability currently
> + * available for use, false if not.

Actually it doesn't return true or false - it returns 1 or 0. Using a
"bool’ return type would fix the comment :)

> + * This sets PF_SUPERPRIV on the task if the capability is available on the
> + * assumption that it's about to be used.

>+ %/

> +int ns_capable(struct user_namespace *ns, int cap)

> +{

if (unlikely(!cap_valid(cap))) {

printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);

BUG();

}

\%

>
>
>
>

> - if (security_capable(current_cred(), cap) == 0) {

> + if (security_capable(ns, current_cred(), cap) == 0) {
> current->flags |= PF_SUPERPRIV,

> return 1;

>}

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> return O;

>}

> -EXPORT_SYMBOL(capable);

> +EXPORT_SYMBOL(ns_capable);
>+

> +/[*
> + * does current have capability 'cap’ to the user namespace of task

>+ *'t", Return true if it does, false otherwise.
>+ %/

Other comments were kerneldocified.

> +int task_ns_capable(struct task_struct *t, int cap)

> +{

> + return ns_capable(task_cred_xxx(t, user)->user_ns, cap);
> +}

> +EXPORT_SYMBOL(task_ns_capable);

Could return bool.

>

> ...

>

> +int cap_capable(struct task_struct *tsk, const struct cred *cred,
> + struct user_namespace *targ_ns, int cap, int audit)

> {
> - return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM,;
>+ for (;;) {

>+ [* The creator of the user namespace has all caps. */

>+ if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
>+ return O;

>+

>+ [* Do we have the necessary capabilities? */

> + if (targ_ns == cred->user->user_ns)

>+ return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM,;
>+

>+ [* Have we tried all of the parent namespaces? */

> + if (targ_ns == &init_user_ns)

>+ return -EPERM;

>+

>+ [*If you have the capability in a parent user ns you have it
>+ *in the over all children user namespaces as well, so see
>+ *if this process has the capability in the parent user

>+ * pnamespace.

>+ %

>+ targ_ns = targ_ns->creator->user_ns;

>+}

>+

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + [* We never get here */
> + return -EPERM,;

So delete the code? Or does the compiler warn? If so, it's pretty busted.

}

/**

V VVVYVYV

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 4 of 4 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

