Subject: Re: [PATCH, v6 3/3] cgroups: introduce timer slack controller
Posted by Kirill A. Shutsemov on Mon, 14 Feb 2011 22:39:39 GMT

View Forum Message <> Reply to Message

On Mon, Feb 14, 2011 at 06:01:06PM +0100, Thomas Gleixner wrote:

> B1;2401;0cOn Mon, 14 Feb 2011, Kirill A. Shutemov wrote:

>

> > On Mon, Feb 14, 2011 at 03:00:03PM +0100, Thomas Gleixner wrote:
>>> 0On Mon, 14 Feb 2011, Kirill A. Shutsemov wrote:

> > > > From: Kirill A. Shutemov <kirill@shutemov.name>

>>>>

> > > > Every task_struct has timer_slack _ns value. This value uses to round up
> > > > poll() and select() timeout values. This feature can be useful in

> > > > mobile environment where combined wakeups are desired.

>>>>

> > > > cgroup subsys "timer_slack" implement timer slack controller. It

> > > > provides a way to group tasks by timer slack value and manage the
> > > > value of group's tasks.

>>>

> > > | have no objections against the whole thing in general, but why do we
> > > need a module for this? Why can't we add this to the cgroups muck and
> > > compile it in?

> >

> > |t was easier to test and debug with module.

> > What is wrong with module? Do you worry about number of exports?

>

> Not only about the number. We don't want exports when they are not

> techically necessary, i.e. for driver stuff.

Ok, I'll drop module support.

> > > > +gtatic int cgroup_timer_slack_check(struct notifier_block *nb,
>>> >+ unsigned long slack_ns, void *data)

>>> >+

> > > > + struct cgroup_subsys_state *css;

> > > > + struct timer_slack_cgroup *tslack _cgroup;

>>>>+

> > > >+ [* XXX: lockdep false positive? */

>>>

>>> What? Either this has a reason or not. If it's a false positive then
>>> |t needs to be fixed in lockdep. If not,

> >

> > | was not sure about it. There is similar workaround in freezer_fork().
>

> | don't care about workarounds in freezer_work() at all. The above

> question remains and this is new code and therefor it either needs to
> hold rcu_read_lock() or it does not.

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5071
https://new-forum.openvz.org/index.php?t=rview&th=9418&goto=41721#msg_41721
https://new-forum.openvz.org/index.php?t=post&reply_to=41721
https://new-forum.openvz.org/index.php

I'll recheck everything once again.

>>>>+rcu_read_lock();

>> > >+ css = task_subsys_state(current, timer_slack _subsys.subsys id);
> > > > + tslack_cgroup = container_of(css, struct timer_slack_cgroup, css);
>>>>+rcu_read_unlock();

>>>>+

>>> > +f (lis_timer_slack_allowed(tslack_cgroup, slack_ns))

> > > > + return notifier_from_errno(-EPERM);

>>>

>>> |f the above needs rcu read lock, why is the acess safe ?

>>>

>>> > +return NOTIFY_OK;

>>>

>>> > 4f*

> > > >+ * Adjust ->timer_slack_ns and ->default_max_slack_ns of the task to fit
> > > >+ * |limits of the cgroup.

>>>>+ %

> > > > +gtatic void tslack_adjust_task(struct timer_slack _cgroup *tslack_cgroup,
> > > >+ struct task_struct *tsk)

>>> >+

>> > > + f (tslack_cgroup->min_slack ns > tsk->timer_slack ns)

>> > >+ tsk->timer_slack _ns = tslack_cgroup->min_slack_ns;

>> > > + else if (tslack_cgroup->max_slack_ns < tsk->timer_slack_ns)
>>> >+ tsk->timer_slack_ns = tslack_cgroup->max_slack_ns;

>>>>+

> > > > +if (tslack_cgroup->min_slack_ns > tsk->default_timer_slack_ns)
>>> >+ tsk->default_timer_slack ns = tslack_cgroup->min_slack_ns;

> > > > + else if (tslack_cgroup->max_slack_ns < tsk->default_timer_slack_ns)
>>> >+ tsk->default_timer_slack ns = tslack_cgroup->max_slack_ns;
>>>

>>>

>>> Why is there not a default slack value for the whole group ?

> >

> > | think it breaks prctl() semantic. default slack value is a value on

> > fork().

>

> cgroups break a lot of semantics.

| don't know what "a lot of semantics" you mean, but it's not a reason
to add more breakage.

> > > > +static ub4 tslack_read_range(struct cgroup *cgroup, struct cftype *cft)
>>> >+

> > > > + struct timer_slack_cgroup *tslack_cgroup;

>>>>+

> > > > + tslack_cgroup = cgroup_to_tslack cgroup(cgroup);

> > > > + switch (cft->private) {

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> >+ case TIMER_SLACK_MIN:

> > > >+ return tslack_cgroup->min_slack_ns;

> >>> + case TIMER_SLACK_MAX:

>>> >+ return tslack_cgroup->max_slack_ns;

> > > > + default:

>>>>+ BUG();

>>>

>>> BUG() for soemthing which can be dealt with sensible ?

> >

> > tslack_read_range() and tslack _write_range() have written to handle
> > defined cftypes. If it used for other cftype it's a bug().

>

> The only caller is initiated from here, right? So we really don't need
> another bug just because you might fatfinger your own code.

People make mistakes. | think BUG() is useful here.

>>> > +|ist_for_each_entry(cur, &cgroup->children, sibling) {

>>> >+ child = cgroup_to_tslack_cgroup(cur);

>>> >+ if (type == TIMER_SLACK_MIN && val > child->min_slack_ns)
>>>>+ return -EBUSY;

>>>

>> > | thought the whole point is to propagate values through the group.
> >

> > | think silent change here is wrong. cpuset returns -EBUSY in similar
> > case.

>

> And how is cpuset relevant for this ? Not at all. This is about

> timer_slack and we better have a well defined scheme for all of this

> and not some cobbled together thing with tons of exceptions and corner
> cases. Of course undocumented as far the code goes.

| don't like silent cascade changes. Userspace can implement it if
needed. -EBUSY is appropriate.

Kirill A. Shutemov

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 3 of 3 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

