Subject: Re: [PATCH, v6 3/3] cgroups: introduce timer slack controller
Posted by Thomas Gleixner on Mon, 14 Feb 2011 17:01:06 GMT

View Forum Message <> Reply to Message

B1;2401;0cOn Mon, 14 Feb 2011, Kirill A. Shutemov wrote:

> On Mon, Feb 14, 2011 at 03:00:03PM +0100, Thomas Gleixner wrote:

> > On Mon, 14 Feb 2011, Kirill A. Shutsemov wrote:

> > > From: Kirill A. Shutemov <kirill@shutemov.name>

>>>

> > > Every task_struct has timer_slack_ns value. This value uses to round up
> > > poll() and select() timeout values. This feature can be useful in

> > > mobile environment where combined wakeups are desired.

>>>

> > > cgroup subsys "timer_slack” implement timer slack controller. It

> > > provides a way to group tasks by timer slack value and manage the

> > > value of group's tasks.

> >

> > | have no objections against the whole thing in general, but why do we
> > need a module for this? Why can't we add this to the cgroups muck and
> > compile it in?

>

> |t was easier to test and debug with module.

> What is wrong with module? Do you worry about number of exports?

Not only about the number. We don't want exports when they are not
techically necessary, i.e. for driver stuff.

> > > +static int cgroup_timer_slack _check(struct notifier_block *nb,
> > >+ unsigned long slack_ns, void *data)

>> >+

> > > + struct cgroup_subsys_state *css;

> > > + struct timer_slack _cgroup *tslack_cgroup;

>>>+

> > > + [* XXX: lockdep false positive? */

> >

>> What? Either this has a reason or not. If it's a false positive then
> > jt needs to be fixed in lockdep. If not,

>

> | was not sure about it. There is similar workaround in freezer_fork().

| don't care about workarounds in freezer_work() at all. The above
guestion remains and this is new code and therefor it either needs to
hold rcu_read_lock() or it does not.

>> >+ rcu_read_lock();
> > > + css = task_subsys_state(current, timer_slack_subsys.subsys_id);
> > > + tslack_cgroup = container_of(css, struct timer_slack_cgroup, css);

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1942
https://new-forum.openvz.org/index.php?t=rview&th=9418&goto=41692#msg_41692
https://new-forum.openvz.org/index.php?t=post&reply_to=41692
https://new-forum.openvz.org/index.php

>>>+rcu_read_unlock();

>>>+

> > > + if (lis_timer_slack_allowed(tslack cgroup, slack_ns))

> > >+ return notifier_from_errno(-EPERM);

> >

>> |f the above needs rcu read lock, why is the acess safe ?

> >

> > > + return NOTIFY_OK;

> >

> > > 4f*

> > >+ * Adjust ->timer_slack _ns and ->default_max_slack_ns of the task to fit
> > > + * [imits of the cgroup.

>>>+ %

> > > +static void tslack_adjust_task(struct timer_slack_cgroup *tslack _cgroup,
> > > + struct task_struct *tsk)

>> >+

> > > + if (tslack_cgroup->min_slack ns > tsk->timer_slack _ns)

> > >+ tsk->timer_slack ns = tslack_cgroup->min_slack_ns;

> > > + else if (tslack_cgroup->max_slack ns < tsk->timer_slack_ns)

> > >+ tsk->timer_slack ns = tslack _cgroup->max_slack ns;

>>>+

> > > + if (tslack_cgroup->min_slack_ns > tsk->default_timer_slack_ns)
> > >+ tsk->default_timer_slack _ns = tslack_cgroup->min_slack_ns;

> > > + else if (tslack _cgroup->max_slack _ns < tsk->default_timer_slack_ns)
> > > + tsk->default_timer_slack _ns = tslack_cgroup->max_slack_ns;
> >

> >

>> Why is there not a default slack value for the whole group ?

>

> | think it breaks prctl() semantic. default slack value is a value on

> fork().

cgroups break a lot of semantics.

> > > +static u64 tslack read_range(struct cgroup *cgroup, struct cftype *cft)
>> >+

> > > + struct timer_slack _cgroup *tslack_cgroup;

>>>+

> > > + tslack_cgroup = cgroup_to_tslack cgroup(cgroup);

> > > + switch (cft->private) {

>> >+ case TIMER_SLACK_ MIN:

> > >+ return tslack_cgroup->min_slack_ns;

>> > + case TIMER_SLACK_MAX:

> > >+ return tslack_cgroup->max_slack_ns;

> > > + default:

>>>+ BUG();

> >

> > BUG() for soemthing which can be dealt with sensible ?

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> tslack _read_range() and tslack_write_range() have written to handle
> defined cftypes. If it used for other cftype it's a bug().

The only caller is initiated from here, right? So we really don't need
another bug just because you might fatfinger your own code.

> > > + list_for_each_entry(cur, &cgroup->children, sibling) {

>> >+ child = cgroup_to_tslack_cgroup(cur);

>> >+ if (type == TIMER_SLACK_MIN && val > child->min_slack_ns)
>>>+ return -EBUSY;

> >

> > | thought the whole point is to propagate values through the group.
>

> | think silent change here is wrong. cpuset returns -EBUSY in similar
> case.

And how is cpuset relevant for this ? Not at all. This is about
timer_slack and we better have a well defined scheme for all of this

and not some cobbled together thing with tons of exceptions and corner
cases. Of course undocumented as far the code goes.

Thanks,

tglx

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

