Subject: Re: [PATCH 4/5] c/r: checkpoint and restart pids objects
Posted by Oren Laadan on Sat, 05 Feb 2011 22:21:43 GMT

View Forum Message <> Reply to Message

Suka,
Thanks for the review.

On 02/05/2011 04:43 PM, Sukadev Bhattiprolu wrote:

> Oren:

>

> | am still reviewing this patchset, but have a few questions/comments
> below on this patch.

>

> | From: Oren Laadan <orenl@cs.columbia.edu>

> | Subject: [PATCH 4/5] c/r: checkpoint and restart pids objects

> |

> | Make use of (shared) pids objects instead of simply saving the pid_t
> | numbers in both checkpoint and restart.

> |

> | The motivation for this change is twofold. First, since pid-ns came to
> | life pid's in the kenrel _are_shared objects and should be treated as
> | such. This is useful e.g. for tty handling and also file-ownership

> | (the latter waiting for this feature). Second, to properly support

> | nested namesapces we need to report with each pid the entire list of
> | pid numbers, not only a single pid. While current we do that for all

> | "live" pids (those that belong to live tasks), we didn't do it for

> | "dead" pids (to be assigned to ghost restarting tasks).

> |

> | Note, that ideally the list of vpids of a pid object should also

> | include the pid-ns to which each level belongs; however, in this patch
> | we don't yet hanlde that. So only linear pid-nesting works well and

> | not arbitrary tree.

> |

> | DICLAIMER: this patch is big and intrusive! Here is a summary of the
> | changes that it makes:

]

> | diff --git a/include/linux/checkpoint_hdr.h b/include/linux/checkpoint_hdr.h
> | index 922eff0..c0a548a 100644

> | --- a/include/linux/checkpoint_hdr.h

> | +++ bf/include/linux/checkpoint_hdr.h

>| @@ -107,7 +107,9 @@ enum {

>| CKPT_HDR_SECURITY,

> | #define CKPT_HDR_SECURITY CKPT_HDR_SECURITY

>

>| - CKPT_HDR_TREE = 101,

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1848
https://new-forum.openvz.org/index.php?t=rview&th=9369&goto=41536#msg_41536
https://new-forum.openvz.org/index.php?t=post&reply_to=41536
https://new-forum.openvz.org/index.php

> |+ CKPT_HDR_PIDS =101,

> | +#define CKPT_HDR_PIDS CKPT_HDR_PIDS

> | + CKPT_HDR_TREE,

> | #define CKPT_HDR_TREE CKPT_HDR_TREE

>| CKPT_HDR_TASK,

> | #define CKPT_HDR_TASK CKPT_HDR_TASK

>| @@ -358,20 +360,32 @@ struct ckpt_hdr_container {
> *

> | } __attribute__ ((aligned(8)));;

> |

> | +/* pids array */

> | +struct ckpt_hdr_pids {

> | + struct ckpt_hdr h;

> |+ u32 nr_pids;

> |+ u32nr_vpids;

> | +} __ attribute__ ((aligned(8)));

>

> For consistency can we call this ckpt_hdr_pids_tree ?

'struct ckpt_hdr_pids' and 'struct ckpt_pids' are related, and
do not provide information about the process tree. See also,
for example, 'struct ckpt_eventpoll_item' and the .._hdr_.. one.

>

> |+

> | +struct ckpt_pids {

> |+ __ u32 depth;

> |+ __s32 numbers[1];

> | +} __ attribute__ ((aligned(8)));

> |+

>

> This actually corresponds to _one_ 'struct pid' right ? Can we rename to
> 'struct ckpt_pid' or ckpt_struct_pid ?

Yes, it corresponds to a single pid object, which has _multiple
(rather than a single) pids numbers --> hence the name.

>
> | /*task tree */

> | struct ckpt_hdr_tree {

> | struct ckpt_hdr h;

> | -__s32 nr_tasks;

> |+ __ u32 nr_tasks;

>| } _attribute__ ((aligned(8)));
>

> And this to, ckpt_hdr_task_tree ?

Ok.

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

]

> | + for (n = 0; n < ctx->nr_tasks; n++) {

> | + task = ctx->tasks_arr[n];

> |+

> | + rcu_read_lock();

> | + pid = get_pid(task_pid(task));

> | + tgid = get_pid(task_tgid(task));

> |+ pgrp = get_pid(task_pgrp(task));

> | + session = get_pid(task_session(task));

> | + rcu_read_unlock();

> |+

>|+ /*

> |+ * How to handle references to pids outside our pid-ns ?
> |+ *In container checkpoint, such pids are prohibited, so
> |+ *we report an error.

> |+ *In subtree checkpoint it is valid, however, we don't

> | + * collect them here to not leak data (it is irrelevant

> |+ *to userspace anyway), Instead, in checkpoint_tree() we
> | + * substitute O for the such pgrp/session entries.

>+ ¥

> |+

> |+ /* pid */

> | + ret = ckpt_obj_lookup_add(ctx, pid,

>|+ CKPT_OBJ_PID, &new);

> |+ if (ret >= 0 && new) {

> | + depth += pid->level - root_pidns->level,

>

> 'depth’ here was a bit confusing to me. We are really counting of the
> number of vpids. So, can you rename 'depth’ to nr_pids ?

So either 'vpids', or 'levels'. The problem with 'nr_pids’ is that
it's ambiguous: could be number of pid-objects, or pid-numbers.

>

> (i.e if you find a process with pid and tgid two levels deep, it initially

> appeared that the depth would be 4. But the depth is still 2 and the number
> of vpids is 4 right ?)

Yes, it is summing the depths.

> | + ret=flex_array_put(pids_arr, i++, pid, GFP_KERNEL);
>|+ new=0;

>|+}

> |+

> | + /*tgid: if tgid != pid) */

> | + if (ret >= 0 && tgid != pid)

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> | + ret = ckpt_obj_lookup_ add(ctx, tgid,

> |+ CKPT_OBJ_PID, &new);

> | + if (ret >= 0 && new) {

> | + depth +=tgid->level - root_pidns->level,

> |+ ret=flex_array_put(pids_arr, i++, tgid, GFP_KERNEL);
>|+ new =0;

>|+ }

> |+

>|+ /*

> |+ *pgrp: if in our pid-namespace, and

>|+ * if pgrp != tgid, and if pgrp != root_session

>|+ ¥

> | + if (pid_nr_ns(pgrp, root_pidns) == 0) {

> | + /[* pgrp must be ours in container checkpoint */

> |+ if ({(ctx->uflags & CHECKPOINT_SUBTREE))

>|+ ret=-EBUSY;

> | + }else if (ret >= 0 && pgrp != tgid && pgrp != root_session)
> | + ret=ckpt_obj_lookup_add(ctx, pgrp,

> |+ CKPT_OBJ_PID, &new);

> | + if (ret >= 0 && new) {

> | + depth += pgrp->level - root_pidns->level;

> | + ret=flex_array put(pids_arr, i++, pgrp, GFP_KERNEL);
>|+ new=0;

>|+}

> |+

>|+ /*

> |+ *session: if in our pid-namespace, and

>|+ * if session != tgid, and if session !=root_session
>|+ *

> | + if (pid_nr_ns(session, root_pidns) == 0) {

> |+ [* session must be ours in container checkpoint */

> |+ if (I(ctx->uflags & CHECKPOINT_SUBTREE))

>|+ ret=-EBUSY;

> | + }else if (ret >= 0 && session != tgid && session != root_session)
> | + ret=ckpt_obj_lookup_add(ctx, session,

> |+ CKPT_OBJ_PID, &new);

> | + if (ret >= 0 && new) {

> | + depth += session->level - root_pidns->level;

> | + ret=flex_array_put(pids_arr, i++, session, GFP_KERNEL);
>|+}

> |+

> | + put_pid(pid);

> | + put_pid(tgid);

> | + put_pid(pgrp);

> | + put_pid(session);

>

> We save the pid pointers in the flex_array right ? If we put the references
> here, the pointers in flex_array don't have a reference, so the pid pointer

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> access in checkpoint_pids_dump() is unsafe ?

>

> Or is it that the process tree is frozen so the pid won't go away ? If
> so do we need the get_pid() and put_pid() in this function ?

We get a reference inside the rcu_read_lock() so that we could safely
access them after we drop the lock. Then we add each (new) pid to the
objhash - which will take another reference to it. Finally we drop

the local reference no longer needed.

I'll a comment to make it clear.

> |+

> |+ if (ret<0)

> |+ break;

>|+}

> |+

> | +*nr_pids = ;

> | + *nr_vpids = depth;

> |+

> | + ckpt_debug("nr_pids = %d, nr_vpids = %d\n", i, depth);
> | + return ret;

> | +}

> |+

> | +static int checkpoint_pids_dump(struct ckpt_ctx *ctx,
> |+ struct flex_array *pids_arr,

> |+ int nr_pids, int nr_vpids)

> |+

> | + struct ckpt_hdr_pids *hh;

> | + struct ckpt_pids *h;

> | + struct pid *pid;

> | + char *buf;

> | +int root_level;

> | +int len, pos;

> | + int depth = 0;

>

> Here t00, using 'depth’ to count nr_vpids is a bit confusing :-)

Ok - will change as above.

>

>|+inti,n=0;

> | +intret;

> |+

> | + hh = ckpt_hdr_get_type(ctx, sizeof(*hh), CKPT_HDR_PIDS);
> | +if (thh)

> | + return -ENOMEM,;

> |+

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> | + hh->nr_pids = nr_pids;

> | + hh->nr_vpids = nr_vpids;

> |+

> | + ret = ckpt_write_obj(ctx, &hh->h);

> | + ckpt_hdr_put(ctx, hh);

> | +if (ret < 0)

> | + return ret;

> |+

> | + pos = (nr_pids * sizeof(*h)) + (nr_vpids * sizeof(__s32));
> | + ret = ckpt_write_obj_type(ctx, NULL, pos, CKPT_HDR_BUFFER);
> | +if (ret < 0)

> | + return ret;

> |+

> | + buf = ckpt_hdr_get(ctx, PAGE_SIZE);

> | + if (Ibuf)

> | + return -ENOMEM,;

> |+

> | + root_level = ctx->root_nsproxy->pid_ns->level;
> |+

> | + while (n < nr_pids) {

> |+ pos =0;

> |+

> | + rcu_read_lock();

> | + while (2) {

> |+ pid = flex_array_get(pids_arr, n);

> | + len = sizeof(*h) + pid->level * sizeof(__s32);

>

> Hmm. pid->level is the global level here right ? So if we checkpoint a
> container 2 levels deep, we don't need to save the vpids for levels 0,1.
> do we ? Or should we s/pid->level/(pid->level - root->level)/ (like

> we do for h->depth below ?

The latter. Good catch !

>

> |+

> |+ /* need to flush current buffer ? */

> | + if (pos +len > PAGE_SIZE || n == nr_pids)
> |+ break;

> |+

> |+ h = (struct ckpt_pids *) &buf[pos];

> | + h->depth = pid->level - root_level;

> |+ for (i=0;i<=h->depth; i++)

> |+ h->numbers]i] = pid->numbers[pid->level + i].nr;
> |+ depth += h->depth;

> |+ pos +=len;

>|+ n++ty

>|+ }

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> | + rcu_read_unlock();

> |+

> | + /* something must have changed since last count... */

> | + if (depth > nr_vpids) {

> |+ ret=-EBUSY;

> |+ break;

>|+}

> |+

> | + ret = ckpt_kwrite(ctx, buf, pos);

>|+ if (ret<0)

> |+ break;

>

> Do we need to memset(buf, 0, sizeof(buf)) here ? Specially if we expect
> to fill Os in ancestor pid namespaces (in the above example of

> checkpointing a container 2 levels deep, do we want to write zeros for
> the pid in levels 0,1) ?

We shouldn't need it - assuming we fix the above as noted.
Thanks,

Oren.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

