
Subject: Re: [PATCH 1/2] signals: kill(-1) should only signal processes in the same
namespace
Posted by Pavel Emelianov on Thu, 17 Jul 2008 15:54:22 GMT
View Forum Message <> Reply to Message

Daniel Hokka Zakrisson wrote:
> Pavel Emelyanov wrote:
>> Daniel Hokka Zakrisson wrote:
>>> While moving Linux-VServer to using pid namespaces, I noticed that
>>> kill(-1) from inside a pid namespace is currently signalling every
>>> process in the entire system, including processes that are otherwise
>>> unreachable from the current process.
>> This is not a "news" actually, buy anyway - thanks :)
>
> And yet nobody's fixed it... Kind of a critical thing, if you actually
> want to use them, since most distribution's rc-scripts do a kill(-1,
> SIGTERM), followed by kill(-1, SIGKILL) when halting (which, needless to
> say, would be very bad).
>
>>> This patch fixes it by making sure that only processes which are in
>>> the same pid namespace as current get signalled.
>> This is to be done, indeed, but I do not like the proposed implementation,
>> since you have to walk all the tasks in the system (under tasklist_lock,
>> by the way) to search for a couple of interesting ones. Better look at how
>> zap_pid_ns_processes works (by the way - I saw some patch doing so some
>> time ago).
>
> The way zap_pid_ns_processes does it is worse, since it signals every
> thread in the namespace rather than every thread group. So either we walk

It's questionable whether there are more "threads in a pid namespace" than
"processes in a system".

E.g. on my notebook there are ~110 processes and ~150 threads. So having
this setup launched in 10 containers you'll have to walk 1100 tasks, while
zap_pid_ns_processes only 150 ;)

Some real-life example with containers: on one of our servers with 10
containers serving as git repo, bulding system and some other stuff there
are ~200 process totally and ~20 threads in each container. See?

I tend to believe that walking threads in a container is cheaper then
walking processes in a system...

> the global tasklist, or we create a per-namespace one. Is that what we
> want?

We want to kill all tasks in current pid namespace. There are variants of

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=6506&goto=32034#msg_32034
https://new-forum.openvz.org/index.php?t=post&reply_to=32034
https://new-forum.openvz.org/index.php

how to do this. You particular implementation of handling this case seems
poor to me for the reasons described above.

>>> Signed-off-by: Daniel Hokka Zakrisson <daniel@hozac.com>
>>>
>>> diff --git a/include/linux/pid_namespace.h
>>> b/include/linux/pid_namespace.h
>>> index caff528..4cf41bd 100644
>>> --- a/include/linux/pid_namespace.h
>>> +++ b/include/linux/pid_namespace.h
>>> @@ -40,6 +40,8 @@ static inline struct pid_namespace *get_pid_ns(struct
>>> pid_namespace *ns)
>>> extern struct pid_namespace *copy_pid_ns(unsigned long flags, struct
>>> pid_namespace *ns);
>>> extern void free_pid_ns(struct kref *kref);
>>> extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);
>>> +extern int task_in_pid_ns(struct task_struct *tsk,
>>> +			 struct pid_namespace *pid_ns);
>>>
>>> static inline void put_pid_ns(struct pid_namespace *ns)
>>> {
>>> @@ -72,6 +74,12 @@ static inline void zap_pid_ns_processes(struct
>>> pid_namespace *ns)
>>> {
>>> 	BUG();
>>> }
>>> +
>>> +static inline int task_in_pid_ns(struct task_struct *tsk,
>>> +				 struct pid_namespace *ns)
>>> +{
>>> +	return 1;
>>> +}
>>> #endif /* CONFIG_PID_NS */
>>>
>>> static inline struct pid_namespace *task_active_pid_ns(struct
>>> task_struct *tsk)
>>> diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c
>>> index 98702b4..3e71011 100644
>>> --- a/kernel/pid_namespace.c
>>> +++ b/kernel/pid_namespace.c
>>> @@ -188,6 +188,26 @@ void zap_pid_ns_processes(struct pid_namespace
>>> *pid_ns)
>>> 	return;
>>> }
>>>
>>> +/*
>>> + * Checks whether tsk has a pid in the pid namespace ns.
>>> + * Must be called with tasklist_lock read-locked or under

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> rcu_read_lock()
>>> + */
>>> +int task_in_pid_ns(struct task_struct *tsk, struct pid_namespace *ns)
>>> +{
>>> +	struct pid *pid = task_pid(tsk);
>>> +
>>> +	if (!pid)
>>> +		return 0;
>>> +
>>> +	if (pid->level < ns->level)
>>> +		return 0;
>>> +
>>> +	if (pid->numbers[ns->level].ns != ns)
>>> +		return 0;
>>> +
>>> +	return 1;
>>> +}
>>> +
>>> static __init int pid_namespaces_init(void)
>>> {
>>> 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
>>> diff --git a/kernel/signal.c b/kernel/signal.c
>>> index 6c0958e..93713a5 100644
>>> --- a/kernel/signal.c
>>> +++ b/kernel/signal.c
>>> @@ -1145,7 +1145,8 @@ static int kill_something_info(int sig, struct
>>> siginfo *info, int pid)
>>> 		struct task_struct * p;
>>>
>>> 		for_each_process(p) {
>>> -			if (p->pid > 1 && !same_thread_group(p, current)) {
>>> +			if (p->pid > 1 && !same_thread_group(p, current) &&
>>> +			 task_in_pid_ns(p, current->nsproxy->pid_ns)) {
>>> 				int err = group_send_sig_info(sig, info, p);
>>> 				++count;
>>> 				if (err != -EPERM)
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

