
Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Daisuke Nishimura on Mon, 14 Jul 2008 12:36:09 GMT
View Forum Message <> Reply to Message

On Mon, 14 Jul 2008 16:54:44 +0900, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
wrote:
> On Mon, 14 Jul 2008 15:28:22 +0900
> Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> wrote:
> 
> > On Fri, 11 Jul 2008 09:20:58 +0900, KAMEZAWA Hiroyuki
<kamezawa.hiroyu@jp.fujitsu.com> wrote:
> > > Thank you for your effort.
> > > 
> > > On Wed, 9 Jul 2008 23:46:33 -0700
> > > "Paul Menage" <menage@google.com> wrote:
> > > > 3) memory
> > > > 
> > > > Curently the memory cgroup only uses the mm->owner's cgroup at charge
> > > > time, and keeps a reference to the cgroup on the page. However,
> > > > patches have been proposed that would move all non-shared (page count
> > > > == 1) pages to the destination cgroup when the mm->owner moves to a
> > > > new cgroup. Since it's not possible to prevent page count changes
> > > > without locking all mms on the system, even this transaction approach
> > > > can't really give guarantees. However, something like the following
> > > > would probably be suitable. It's very similar to the memrlimit
> > > > approach, except for the fact that we have to handle the fact that the
> > > > number of pages we finally move might not be exactly the same as the
> > > > number of pages we thought we'd be moving.
> > > > 
> > > > prepare_attach_sleep() {
> > > >   down_read(&mm->mmap_sem);
> > > >   if (mm->owner != state->task) return 0;
> > > >   count = count_unshared_pages(mm);
> > > >   // save the count charged to the new cgroup
> > > >   state->subsys[memcgroup_subsys_id] = (void *)count;
> > > >   if ((ret = res_counter_charge(state->dest, count)) {
> > > >     up_read(&mm->mmap_sem);
> > > >   }
> > > >   return ret;
> > > > }
> > > > 
> > > > commit_attach() {
> > > >   if (mm->owner == state->task) {
> > > >     final_count = move_unshared_pages(mm, state->dest);
> > > >     res_counter_uncharge(state->src, final_count);
> > > >     count = state->subsys[memcgroup_subsys_id];
> > > >     res_counter_force_charge(state->dest, final_count - count);
> > > >   }

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31917#msg_31917
https://new-forum.openvz.org/index.php?t=post&reply_to=31917
https://new-forum.openvz.org/index.php


> > > >   up_read(&mm->mmap_sem);
> > > > }
> > > > 
> > > > abort_attach_sleep() {
> > > >   if (mm->owner == state->task) {
> > > >     count = state->subsys[memcgroup_subsys_id];
> > > >     res_counter_uncharge(state->dest, count);
> > > >   }
> > > >   up_read(&mm->mmap_sem);
> > > > }
> > > > 
> > > 
> > > At frist look, maybe works well. we need some special codes (to move resource)
> > > but that's all.
> > > 
> > > My small concern is a state change between prepare_attach_sleep() ->
> > > commit_attach(). Hmm...but as you say, we cannot do down_write(mmap_sem).
> > > Maybe inserting some check codes to mem_cgroup_charge() to stop charge while
> > > move is the last thing we can do.
> > > 
> > I have two comments.
> > 
> > - I think page reclaiming code decreases the memory charge
> >   without holding mmap_sem(e.g. try_to_unmap(), __remove_mapping()).
> >   Shouldn't we handle these cases?
> 
> I think decreasing is not problem, here.
> I don't like handle mmap->sem by some unclear way. I'd like to add some flag to
> mm_struct or page_struct to stop(skip/avoid) charge/uncharge while task move.
> 
It would be a good idea.

> > - When swap controller is merged, I should implement
> >   prepare_attach_nosleep() which holds swap_lock.
> > 
> just making add_to_swap() fail during move is not enough ?
> 
This can only avoid increasing, I think.

I thought it would be better to avoid decreasing too, 
just because some special handling on uncharged usage
would be needed in rollback or commit.

Anyway, I think it depends on how to implement move and rollback,
and I will consider more.
Thank you for your suggestion.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


Thanks,
Daisuke Nishimura.
_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

