
Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Matt Helsley on Sat, 12 Jul 2008 00:48:14 GMT
View Forum Message <> Reply to Message

On Fri, 2008-07-11 at 17:18 -0700, Paul Menage wrote:
> On Fri, Jul 11, 2008 at 5:03 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >> struct cgroup_attach_state {
> >
> > nit: How about naming it cgroup_attach_request or
> > cgroup_attach_request_state? I suggest this because it's not really
> > "state" that's kept beyond the prepare-then-(commit|abort) sequence.
>
> State doesn't have to be long-lived to be state. But I'm not too
> worried about the exact name for it, if people have other preferences.
>
> >
> > What about the task->alloc_lock? Might that need to be taken by multiple
> > subsystems? See my next comment.
>
> My thought was that cgroups would take that anyway prior to calling
> prepare_attach_nosleep(), since it's a requirement for changing
> task->cgroups anyway.

Yeah, that makes sense.

> >
> > Rather than describing what might be called later for each API entry
> > separately it might be simpler to prefix the whole API/protocol
> > description with something like:
> > ======
> > A successful return from prepare_X will cause abort_X to be called if
> > any of the prepatory calls fail. (where X is either sleep or nosleep)
> >
> > A successful return from prepare_X will cause commit to be called if all
> > of the prepatory calls succeed. (where X is either sleep or nosleep)
> >
> > Otherwise no calls to abort_X or commit will be made. (where X is either
> > sleep or nosleep)
>
> I'll play with working that into the description.
>
> > I think that's correct based on your descriptions. Of course changing
> > this only makes sense if this proposal will go into Documentation/ in
> > some form..
>
> Yes, we'd definitely need to document this in some detail.
>
> >

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31892#msg_31892
https://new-forum.openvz.org/index.php?t=post&reply_to=31892
https://new-forum.openvz.org/index.php

> > Allowing prepare_X to hold locks when it has exitted seems ripe for
> > introducing two separate subsystems that inadvertently take locks out of
> > order.
>
> Yes, but I'm not sure that there's much that we can do about that. If
> we want to guarantee to be able to rollback one subsystem when a later
> subsystem fails then we have to let the earlier subsystems continue to
> hold locks. Or is this too ambitious a goal to support?

	I can't see a better way to support that goal and it doesn't seem
overly ambitious to me. Just needs a somewhat specific test
configuration for new subsystem patches to detect the deadlock issue.

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

