
Subject: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Thu, 10 Jul 2008 06:46:33 GMT
View Forum Message <> Reply to Message

This is an initial design for a transactional task attachment
framework for cgroups. There are probably some potential simplications
that I've missed, particularly in the area of locking. Comments
appreciated.

The Problem
===========

Currently cgroups task movements are done in three phases

1) all subsystems in the destination cgroup get the chance to veto the
movement (via their can_attach()) callback
2) task->cgroups is updated (while holding task->alloc_lock)
3) all subsystems get an attach() callback to let them perform any
housekeeping updates

The problems with this include:

- There's no way to ensure that the result of can_attach() remains
valid up until the attach() callback, unless any invalidating
operations call cgroup_lock() to synchronize with the change. This is
fine for something like cpusets, where invalidating operations are
rare slow events like the user removing all cpus from a cpuset, or cpu
hotplug triggering removal of a cpuset's last cpu. It's not so good
for the virtual address space controller where the can_attach() check
might be that the res_counter has enough space, and an invalidating
operation might be another task in the cgroup allocating another page
of virtual address space.

- It doesn't handle the case of the proposed "cgroup.procs" file which
can move multiple threads into a cgroup in one operation; the
can_attach() and attach() calls should be able to atomically allow all
or none of the threads to move.

- it can create races around the time of the movement regarding to
which cgroup a resource charge/uncharge should be assigned (e.g.
between steps 2 and 3 new resource usage will be charged to the
destination cgroup, but step 3 might involve migrating a charge equal
to the task's resource usage from the old cgroup to the new, resulting
in over/under-charges.

Conceptual solution
===================

Page 1 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31800#msg_31800
https://new-forum.openvz.org/index.php?t=post&reply_to=31800
https://new-forum.openvz.org/index.php

In ideal terms, a solution for this problem would meet the following
requirements:

- support movement of an arbitrary set of threads between an arbitrary
set of cgroups
- allow arbitrarily complex locking from the subsystems involved so
that they can synchronize against concurrent charges, etc
- allow rollback at any point in the process

But in practice that would probably be way more complex than we'd want
in the kernel. We don't want to encourage excessively-complex locking
from subsystems, and we don't need to support arbitrary task
movements.

(Hopefully!) Practical solution
=============

So here's a more practical solution, which hopefully catches the
important parts of the requirements without being quite so complex.

The restrictions are:

- only supporting movement to one destination cgroup (in the same
hierarchy, of course); if an entire process is being moved, then
potentially its threads could be coming from different source cgroups
- a subsystem may optionally fail such an attach if it can't handle
the synchronization this would entail.

- supporting moving either one thread, one entire thread group or (for
the future) "all threads". This supports the existing "tasks" file,
the proposed "procs" file and also allows scope for things like adding
a subsystem to an existing hierarchy.

- locking/checking performed in two phases - one to support sleeping
locks, and one to support spinlocks. This is to support both
subsystems that use mutexes to protect their data, and subsystems that
use spinlocks

- no locks allowed to be shared between multiple subsystems during the
transaction, with the single exception of the mmap_sem of the
thread/process being moved. This is because multiple subsystems use
the mmap_sem for synchronization, and are quite likely to be mounted
in the same hierarchy. The alternative would be to introduce a
down_read_unfair() operation that would skip ahead of waiting writers,
to safely allow a single thread to recursively lock mm->mmap_sem.

Page 2 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

First we define the state for the transaction:

struct cgroup_attach_state {

 // The thread or process being moved, NULL if moving (potentially) all threads
 struct task_struct *task;
 enum {
 CGROUP_ATTACH_THREAD,
 CGROUP_ATTACH_PROCESS,
 CGROUP_ATTACH_ALL
 } mode;

 // The destination cgroup
 struct cgroup *dest;

 // The source cgroup for "task" (child threads *may* have different
groups; subsystem must handle this if it needs to)
 struct cgroup *src;

 // Private state for the attach operation per-subsys. Subsystems are
completely responsible for managing this
 void *subsys_state[CGROUP_SUBSYS_STATE];

 // "Recursive lock count" for task->mm->mmap_sem (needed if we don't
introduce down_read_unfair())
 int mmap_sem_lock_count;
};

New cgroup subsystem callbacks (all optional):

int prepare_attach_sleep(struct cgroup_attach_state *state);

Called during the first preparation phase for each subsystem. The
subsystem may perform any sleeping behaviour, including waiting for
mutexes and doing sleeping memory allocations, but may not disable
interrupts or take any spinlocks. Return a -ve error on failure or 0
on success. If it returns failure, then no further callbacks will be
made for this attach; if it returns success then exactly one of
abort_attach_sleep() or commit_attach() is guaranteed to be called in
the future

No two subsystems may take the same lock as part of their
prepare_attach_sleep() callback. A special case is made for mmap_sem:
if this callback needs to down_read(&state->task->mmap_sem) it should
only do so if state->mmap_sem_lock_count++ == 0. (A helper function
will be provided for this). The callback should not

Page 3 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

write_lock(&state->task->mmap_sem).

Called with group_mutex (which prevents any other task movement
between cgroups) held plus any mutexes/semaphores taken by earlier
subsystems's callbacks.

int prepare_attach_nosleep(struct cgroup_attach_state *state);

Called during the second preparation phase (assuming no subsystem
failed in the first phase). The subsystem may not sleep in any way,
but may disable interrupts or take spinlocks. Return a -ve error on
failure or 0 on success. If it returns failure, then
abort_attach_sleep() will be called; if it returns success then either
abort_attach_nosleep() followed by abort_attach_sleep() will be
called, or commit_attach() will be called

Called with cgroup_mutex and alloc_lock for task held (plus any
mutexes/semaphores taken by subsystems in the prepare_attach_nosleep()
phase, and any spinlocks taken by earlier subsystems in this phase .
If state->mode == CGROUP_ATTACH_PROCESS then alloc_lock for all
threads in task's thread_group are held. (Is this a really bad idea?
Maybe we should call this without any task->alloc_lock held?)

void abort_attach_sleep(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_sleep().
Indicates that the attach operation was aborted and the subsystem
should unwind any state changes made and locks taken by
prepare_attach_sleep().

Called with same locks as prepare_attach_sleep()

void abort_attach_nosleep(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_nosleep().
Indicates that the attach operation was aborted and the subsystem
should unwind any state changes made and locks taken by
prepare_attach_nosleep().

Called with the same locks as prepare_attach_nosleep();

Page 4 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

void commit_attach(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_sleep() for a
subsystem that has no prepare_attach_nosleep(), or following a
successful return from prepare_attach_nosleep(). Indicates that the
attach operation is going ahead, and
any partially-committed state should be finalized, and any taken locks
should be released. No further callbacks will be made for this attach.

This is called immediately after updating task->cgroups (and threads
if necessary) to point to the new cgroup set.

Called with the same locks held as prepare_attach_nosleep()

Examples
==========

Here are a few examples of how you might use this. They're not
intended to be syntactically correct or compilable - they're just an
idea of what the routines might look like.

1) cpusets

cpusets (currently) uses cgroup_mutex for most of its changes that can
invalidate a task attach. thus it can assume that any checks performed
by prepare_attach_*() will remain valid without needing any additional
locking. The existing callback_mutex used to synchronize cpuset
changes can't be taken in commit_attach() since spinlocks are held at
that point. However, I think that all the current uses of
callback_mutex could actually be replaced with an rwlock, which would
be permitted to be taken during commit_attach(). The cpuset subsystem
wouldn't need to maintain any special state for the transaction. So:

- prepare_attach_nosleep(): same as existing cpuset_can_attach()

- commit_attach(): update tasks' allowed cpus; schedule memory
migration in a workqueue if necessary (since we can't take locks at
this point.

2) memrlimit

memrlimit needs to be able to ensure that:

- changes to an mm's virtual address space size can't occur

Page 5 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

concurrently with the mm's owner moving between cgroups (including via
a change of mm ownership).

- moving the mm's owner doesn't over-commit the destination cgroup

- once the destination cgroup has been checked, additional charges
can't be made that result in the original move becoming invalid

Currently all normal charges and uncharges are done under the
protection of down_write(&mm->mmap_sem); uncharging following a change
that was charged but failed for other reasons isn't done under
mmap_sem, but isn't a critical path so could probably be changed to do
so (it wouldn't have to be all one big critical section).
Additionally, mm->owner changes are also done under
down_write(&mmap_sem). Thus holding down_read(&mmap_sem) across the
transaction is sufficient. So (roughly):

prepare_attach_sleep() {
 // prevent mm->owner and mm->total_vm changes
 down_read(&mm->mmap_sem);
 // Nothing to do if we're not moving the owner
 if (mm->owner != state->task) return 0;
 if ((ret = res_counter_charge(state->dest, mm->total_vm)) {
 // If we failed to allocate in the destination, clean up
 up_read(&mm->mmap_sem);
 }
 return ret;
}

commit_attach() {
 if (mm->owner == state->task) {
 // Release the charge from the source
 res_counter_uncharge(state->src, mm->total_vm);
 }
 // Clean up locks
 up_read(&mm->mmap_sem);
}

abort_attach_sleep() {
 if (mm->owner == state->task) {
 // Remove the temporary charge from the destination
 res_counter_uncharge(state->dest_cgroup, mm->total_vm);
 }
 // Clean up locks
 up_read(&mm->mmap_sem);
}

As mentioned above, to handle the case where multiple subsystems need

Page 6 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

to down_read(&mm->mmap_sem), these down/up operations may actually end
up being done via helper functions to avoid recursive locks.

3) memory

Curently the memory cgroup only uses the mm->owner's cgroup at charge
time, and keeps a reference to the cgroup on the page. However,
patches have been proposed that would move all non-shared (page count
== 1) pages to the destination cgroup when the mm->owner moves to a
new cgroup. Since it's not possible to prevent page count changes
without locking all mms on the system, even this transaction approach
can't really give guarantees. However, something like the following
would probably be suitable. It's very similar to the memrlimit
approach, except for the fact that we have to handle the fact that the
number of pages we finally move might not be exactly the same as the
number of pages we thought we'd be moving.

prepare_attach_sleep() {
 down_read(&mm->mmap_sem);
 if (mm->owner != state->task) return 0;
 count = count_unshared_pages(mm);
 // save the count charged to the new cgroup
 state->subsys[memcgroup_subsys_id] = (void *)count;
 if ((ret = res_counter_charge(state->dest, count)) {
 up_read(&mm->mmap_sem);
 }
 return ret;
}

commit_attach() {
 if (mm->owner == state->task) {
 final_count = move_unshared_pages(mm, state->dest);
 res_counter_uncharge(state->src, final_count);
 count = state->subsys[memcgroup_subsys_id];
 res_counter_force_charge(state->dest, final_count - count);
 }
 up_read(&mm->mmap_sem);
}

abort_attach_sleep() {
 if (mm->owner == state->task) {
 count = state->subsys[memcgroup_subsys_id];
 res_counter_uncharge(state->dest, count);
 }
 up_read(&mm->mmap_sem);
}

Page 7 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

4) numtasks:

Numtasks is different from the two memory-related controllers in that
it may need to move charges from multiple source cgroups (for
different threads); the memory cgroups only have to deal with the mm
of a thread-group leader, and all threads in an attach operation are
from the same thread_group. So numtasks has to be able to handle
uncharging multiple source cgroups in the commit_attach() operation.
In order to do this, it requires additional state:

struct numtasks_attach_state {
 int count;
 struct cgroup *cg;
 struct numtasks_attach_state *next;
}

It will build a list of numtasks_attach_state objects, one for each
distinct source cgroup; in the general case either there will only be
a single thread moving or else all the threads in the thread group
will belong to the same cgroup, in which case this list will only be a
single element; the list is very unlikely to get to more than a small
number of elements.

The prepare_attach_sleep() function can rely on the fact that although
tasks can fork/exit concurrently with the attach, since cgroup_mutex
is held, no tasks can change cgroups, and therefore a complete list of
source cgroups can be constructed.

prepare_attach_sleep() {
 for each thread being moved:
 if the list doesn't yet have an entry for thread->cgroup:
 allocate new entry with cg = thread->cgroup, count = 0;
 add new entry to list
 store list in state->subsys[numtasks_subsys_id];
 return 0;
}

Then prepare_attach_nosleep() can move counts under protection of
tasklist_lock, to prevent any forks/exits

prepare_attach_nosleep() {
 read_lock(&tasklist_lock);
 for each thread being moved {
 find entry for thread->cgroup in list
 entry->count++;
 total_count++;
 }
 if ((ret = res_counter_charge(state->dest, total_count) != 0) {

Page 8 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 read_unlock(&tasklist_lock);
 }
 return ret;
}

commit_attach() {
 for each entry in list {
 res_counter_uncharge(entry->cg, entry->count);
 }
 read_unlock(&tasklist_lock);
 free list;
}

abort_attach_nosleep() {
 // just needs to clear up prepare_attach_nosleep()
 res_counter_uncharge(state->dest, total_count);
 read_unlock(&tasklist_lock);
}

abort_attach_sleep() {
 // just needs to clean up the list allocated in prepare_attach_sleep()
 free list;
}

So, thoughts? Is this just way to complex? Have I missed something
that means this approach can't work?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 9 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

