
Subject: Re: [patch 3/4] Container Freezer: Implement freezer cgroup subsystem
Posted by Paul Menage on Tue, 24 Jun 2008 21:27:10 GMT
View Forum Message <> Reply to Message

On Tue, Jun 24, 2008 at 6:58 AM, Matt Helsley <matthltc@us.ibm.com> wrote:
> From: Cedric Le Goater <clg@fr.ibm.com>
> Subject: [patch 3/4] Container Freezer: Implement freezer cgroup subsystem
>
> This patch implements a new freezer subsystem for Paul Menage's
> control groups framework.

You can s/Paul Menage's// now that it's in mainline.
> +static const char *freezer_state_strs[] = {
> + "RUNNING",
> + "FREEZING",
> + "FROZEN",
> +};
> +
> +/* Check and update whenever adding new freezer states. Currently is:
> + strlen("FREEZING") */
> +#define STATE_MAX_STRLEN 8
> +

That's a bit nasty ...

But hopefully it could go away when the write_string() method is
available in cgroups? (See my patchset from earlier this week).

> +
> +struct cgroup_subsys freezer_subsys;
> +
> +/* Locking and lock ordering:
> + *
> + * can_attach(), cgroup_frozen():
> + * rcu (task->cgroup, freezer->state)
> + *
> + * freezer_fork():
> + * rcu (task->cgroup, freezer->state)
> + * freezer->lock
> + * task_lock
> + * sighand->siglock
> + *
> + * freezer_read():
> + * rcu (freezer->state)
> + * freezer->lock (upgrade to write)
> + * read_lock css_set_lock
> + *
> + * freezer_write()

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6344&goto=31328#msg_31328
https://new-forum.openvz.org/index.php?t=post&reply_to=31328
https://new-forum.openvz.org/index.php

> + * cgroup_lock
> + * rcu
> + * freezer->lock
> + * read_lock css_set_lock
> + * task_lock
> + * sighand->siglock
> + *
> + * freezer_create(), freezer_destroy():
> + * cgroup_lock [by cgroup core]
> + */

> +static int freezer_can_attach(struct cgroup_subsys *ss,
> + struct cgroup *new_cgroup,
> + struct task_struct *task)
> +{
> + struct freezer *freezer;
> + int retval = 0;
> +
> + /*
> + * The call to cgroup_lock() in the freezer.state write method prevents
> + * a write to that file racing against an attach, and hence the
> + * can_attach() result will remain valid until the attach completes.
> + */
> + rcu_read_lock();
> + freezer = cgroup_freezer(new_cgroup);
> + if (freezer->state == STATE_FROZEN)
> + retval = -EBUSY;

Is it meant to be OK to move a task into a cgroup that's currently in
the FREEZING state but not yet fully frozen?
> + struct freezer *freezer;
> +
> + rcu_read_lock(); /* needed to fetch task's cgroup
> + can't use task_lock() here because
> + freeze_task() grabs that */

I'm not sure that RCU is the right thing for this. All that the RCU
lock will guarantee is that the freezer structure you get a pointer to
doesn't go away. It doesn't guarantee that the task doesn't move
cgroup, or that the cgroup doesn't get a freeze request via a write.
But in this case, the fork callback is called before the task is added
to the task_list/pidhash, or to its cgroups' linked lists. So it
shouldn't be able to change groups. Racing against a concurrent write
to the cgroup's freeze file may be more of an issue.

Can you add a __freeze_task() that has to be called with task_lock(p)
already held?

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + freezer = task_freezer(task);

Maybe BUG_ON(freezer->state == STATE_FROZEN) ?
> +
> +static ssize_t freezer_read(struct cgroup *cgroup,
> + struct cftype *cft,
> + struct file *file, char __user *buf,
> + size_t nbytes, loff_t *ppos)
> +{
> + struct freezer *freezer;
> + enum freezer_state state;
> +
> + rcu_read_lock();
> + freezer = cgroup_freezer(cgroup);
> + state = freezer->state;
> + if (state == STATE_FREEZING) {
> + /* We change from FREEZING to FROZEN lazily if the cgroup was
> + * only partially frozen when we exitted write. */
> + spin_lock_irq(&freezer->lock);
> + if (freezer_check_if_frozen(cgroup)) {
> + freezer->state = STATE_FROZEN;
> + state = STATE_FROZEN;
> + }
> + spin_unlock_irq(&freezer->lock);
> + }
> + rcu_read_unlock();
> +
> + return simple_read_from_buffer(buf, nbytes, ppos,
> + freezer_state_strs[state],
> + strlen(freezer_state_strs[state]));
> +}

Technically this could return weird results if someone read it
byte-by-byte and the status changed between reads. If you used
read_seq_string rather than read you'd avoid that.

> + return -EIO;
> +
> + cgroup_lock();

If you're taking cgroup_lock() here in freezer_write(), there's no
need for the rcu_read_lock() in freezer_freeze()

Paul

Containers mailing list
Containers@lists.linux-foundation.org

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

