
Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by Paul Menage on Wed, 11 Jun 2008 07:24:31 GMT
View Forum Message <> Reply to Message

On Tue, Jun 10, 2008 at 2:23 PM, Serge E. Hallyn <serue@us.ibm.com> wrote:
> From faa707a44b971f5f3bf24e6a0c760ccb4ad278e6 Mon Sep 17 00:00:00 2001
> From: Serge Hallyn <serge@us.ibm.com>
> Date: Tue, 10 Jun 2008 15:57:32 -0500
> Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup
>
> cgroup_clone creates a new cgroup with the pid of the task. This works
> correctly for unshare, but for clone cgroup_clone is called from
> copy_namespaces inside copy_process, which happens before the new pid
> is created. As a result, the new cgroup was created with current's pid.
> This patch:
>
> 1. Moves the call inside copy_process to after the new pid
> is created
> 2. Passes the struct pid into ns_cgroup_clone (as it is not
> yet attached to the task)
> 3. Passes a name from ns_cgroup_clone() into cgroup_clone()
> so as to keep cgroup_clone() itself simpler
> 4. Uses pid_vnr() to get the process id value, so that the
> pid used to name the new cgroup is always the pid as it
> would be known to the task which did the cloning or
> unsharing. I think that is the most intuitive thing to
> do. This way, task t1 does clone(CLONE_NEWPID) to get
> t2, which does clone(CLONE_NEWPID) to get t3, then the
> cgroup for t3 will be named for the pid by which t2 knows
> t3.
>
> This hasn't been tested enough to request inclusion, but I'd like to
> get feedback especially from Paul Menage on whether the semantics
> make sense.

Seems like a reasonable idea. It represents yet another change to the
userspace API following the 2.6.25.x one, but I guess that again it's
not one that anyone is seriously relying on yet (in particular since
it's not usable more than once from the same parent currently).

> -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
> +int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
> + char *name)

You could reduce the patch churn by naming this parameter nodename.
> - return cgroup_clone(task, &ns_subsys);
> + struct pid *pid = (inpid ? inpid : task_pid(task));

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30951#msg_30951
https://new-forum.openvz.org/index.php?t=post&reply_to=30951
https://new-forum.openvz.org/index.php

> + char name[MAX_CGROUP_TYPE_NAMELEN];

We should probably stop using MAX_CGROUP_TYPE_NAMELEN for this buffer
length and use something that explicitly sized to fit a pid_t.

> +
> + snprintf(name, MAX_CGROUP_TYPE_NAMELEN, "%d", pid_vnr(pid));
> + return cgroup_clone(task, &ns_subsys, name);
> }
>
> /*
> diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c
> index adc7851..5ca106d 100644
> --- a/kernel/nsproxy.c
> +++ b/kernel/nsproxy.c
> @@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
> goto out;
> }
>
> - err = ns_cgroup_clone(tsk);
> - if (err) {
> - put_nsproxy(new_ns);
> - goto out;
> - }
> -
> tsk->nsproxy = new_ns;
>
> out:
> @@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
> goto out;
> }
>
> - err = ns_cgroup_clone(current);
> + err = ns_cgroup_clone(current, NULL);

Maybe pass task_pid(current) here rather than doing the ?: in
ns_cgroup_clone() ?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

