
Subject: Re: [RFD][PATCH] memcg: Move Usage at Task Move
Posted by Daisuke Nishimura on Tue, 10 Jun 2008 07:35:50 GMT
View Forum Message <> Reply to Message

Hi, Kamezawa-san.

Sorry for late reply.

On Fri, 6 Jun 2008 10:52:35 +0900, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
wrote:
> Move Usage at Task Move (just an experimantal for discussion)
> I tested this but don't think bug-free.
>
> In current memcg, when task moves to a new cg, the usage remains in the old cg.
> This is considered to be not good.
>
I agree.

> This is a trial to move "usage" from old cg to new cg at task move.
> Finally, you'll see the problems we have to handle are failure and rollback.
>
> This one's Basic algorithm is
>
> 0. can_attach() is called.
> 1. count movable pages by scanning page table. isolate all pages from LRU.
> 2. try to create enough room in new memory cgroup
> 3. start moving page accouing
> 4. putback pages to LRU.
> 5. can_attach() for other cgroups are called.
>
You isolate pages and move charges of them by can_attach(),
but it means that pages that are allocated between page isolation
and moving tsk->cgroups remains charged to old group, right?

I think it would be better if possible to move charges by attach()
as cpuset migrates pages by cpuset_attach().
But one of the problem of it is that attch() does not return
any value, so there is no way to notify failure...

> A case study.
>
> group_A -> limit=1G, task_X's usage= 800M.
> group_B -> limit=1G, usage=500M.
>
> For moving task_X from group_A to group_B.
> - group_B should be reclaimed or have enough room.
>
> While moving task_X from group_A to group_B.

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=6211&goto=30908#msg_30908
https://new-forum.openvz.org/index.php?t=post&reply_to=30908
https://new-forum.openvz.org/index.php

> - group_B's memory usage can be changed
> - group_A's memory usage can be changed
>
> We accounts the resouce based on pages. Then, we can't move all resource
> usage at once.
>
> If group_B has no more room when we've moved 700M of task_X to group_B,
> we have to move 700M of task_X back to group_A. So I implemented roll-back.
> But other process may use up group_A's available resource at that point.
>
> For avoiding that, preserve 800M in group_B before moving task_X means that
> task_X can occupy 1600M of resource at moving. (So I don't do in this patch.)
>
> This patch uses Best-Effort rollback. Failure in rollback is ignored and
> the usage is just leaked.
>
If implement rollback in kernel, I think it must not fail to prevent
leak of usage.
How about using "charge_force" for rollbak?

Or, instead of implementing rollback in kernel,
how about making user(or middle ware?) re-echo pid to rollbak
on failure?

> Roll-back can happen when
> (a) in phase 3. cannot move a page to new cgroup because of limit.
> (b) in phase 5. other cgourp subsys returns error in can_attach().
>
Isn't rollbak needed on failure between can_attach and attach(e.g. failure
on find_css_set, ...)?

> +int mem_cgroup_recharge_task(struct mem_cgroup *newcg,
> +				struct task_struct *task)
> +{
(snip)
> +	/* create enough room before move */
> +	necessary = info.count * PAGE_SIZE;
> +
> +	do {
> +		spin_lock(&newcg->res.lock);
> +		if (newcg->res.limit > necessary)
> +			rc = -ENOMEM;
I think it should be (newcg->res.limit < necessary).

Thanks,
Daisuke Nishimura.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

