Subject: Re: [RFC/PATCH 2/8]. CGroup Files: Add a cgroup write_string control file
method
Posted by akpm on Tue, 13 May 2008 20:07:10 GMT

View Forum Message <> Reply to Message

On Mon, 12 May 2008 23:37:09 -0700
menage@google.com wrote:

> This patch adds a write_string() method for cgroups control files. The
> semantics are that a buffer is copied from userspace to kernelspace

> and the handler function invoked on that buffer. Any control group

> locking is done after the copy from userspace has occurred. The buffer
> is guaranteed to be nul-terminated, and no longer than max_write_len
> (defaulting to 64 bytes if unspecified). Later patches will convert

> existing raw file write handlers in control group subsystems to use

> this method.

>

nits:

>
-

> include/linux/cgroup.h | 10 ++++++++++

> Kkernel/cgroup.c | 5 ++++-

> 2 files changed, 14 insertions(+), 1 deletion(-)

>

> |Index: cgroup-2.6.25-mm1l/include/linux/cgroup.h

> --- cgroup-2.6.25-mm2.orig/include/linux/cgroup.h

> +++ cgroup-2.6.25-mm1l/include/linux/cgroup.h

> @@ -281,6 +281,10 @@ struct cftype {

> ¥

> int lockmode;

>

> + [* If non-zero, defines the maximum length of string that can
>+ * pe passed to write_string; defaults to 64 */

> + int max_write_len;

would size_t be a more appropriate type?

> int (*open) (struct inode *inode, struct file *file);

> ssize_t (*read) (struct cgroup *cgrp, struct cftype *cft,

> struct file *file,

> @@ -323,6 +327,12 @@ struct cftype {

> *write_s64() is a signed version of write_u64()

> *

> int (*write_s64) (struct cgroup *cgrp, struct cftype *cft, s64 val);

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=6078&goto=30156#msg_30156
https://new-forum.openvz.org/index.php?t=post&reply_to=30156
https://new-forum.openvz.org/index.php

s/) (/)(/ would be more conventional.

>+ [*

>+ *write_string() is passed a nul-terminated kernelspace

> + * puffer of maximum length determined by max_write_len
>+ %

> + int (*write_string) (struct cgroup *cgrp, struct cftype *cft,
>+ char *buffer);

Should these return size_t?

>
> *trigger() callback can be used to get some kick from the
> Index: cgroup-2.6.25-mm1/kernel/cgroup.c

> --- cgroup-2.6.25-mm2.orig/kernel/cgroup.c

> +++ cgroup-2.6.25-mm1l/kernel/cgroup.c

> @@ -1461,7 +1461,7 @@ static ssize_t cgroup_file_write(struct

> ssize tretval,

> char static_buffer[64];

> char *buffer = static_buffer;

> - ssize_t max_bytes = sizeof(static_buffer) - 1;

> + ssize_t max_bytes = cft->max_write_len ?: sizeof(static_buffer) - 1,

A blank line between end-of-locals and start-of-code is conventional
and, IMO, easier on the eye.

Does gcc actually generate better code with that x?:y thing? Because
it always makes me pause and scratch my head.

> if (Icft->write && !Icft->trigger) {

> if (Inbytes)

> return -EINVAL;

> @@ -1489,6 +1489,8 @@ static ssize_t cgroup_file_write(struct
> retval = cft->write(cgrp, cft, file, userbuf, nbytes, ppos);

> else if (cft->write_u64 || cft->write_s64)

> retval = cgroup_write_X64(cgrp, cft, buffer);

> + else if (cft->write_string)

> + retval = cft->write_string(cgrp, cft, buffer);

> else if (cft->trigger)

> retval = cft->trigger(cgrp, (unsigned int)cft->private);

> else

> @@ -1651,6 +1653,7 @@ static struct file_operations cgroup_seq
> .read = seq_read,

> llseek = seq_Iseek,

> .release = cgroup_seqfile_release,

> + .write = cgroup_file_write,

>}

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> static int cgroup_file_open(struct inode *inode, struct file *file)

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

