
Subject: Re: [RFC/PATCH 1/8]: CGroup Files: Add locking mode to cgroups control
files
Posted by akpm on Tue, 13 May 2008 20:01:27 GMT
View Forum Message <> Reply to Message

Fear, doubt and resistance!

On Mon, 12 May 2008 23:37:08 -0700
menage@google.com wrote:

> Different cgroup files have different stability requirements of the
> cgroups framework while the handler is running; currently most
> subsystems that don't have their own internal synchronization just
> call cgroup_lock()/cgroup_unlock(), which takes the global cgroup_mutex.
>
> This patch introduces a range of locking modes that can be requested
> by a control file; currently these are all implemented internally by
> taking cgroup_mutex, but expressing the intention will make it simpler
> to move to a finer-grained locking scheme in the future.
>

This, umm, doesn't seem to do much to make the kernel a simpler place.

Do we expect to gain much from this? Hope so... What?

> Index: cgroup-2.6.25-mm1/include/linux/cgroup.h
> ===
> --- cgroup-2.6.25-mm1.orig/include/linux/cgroup.h
> +++ cgroup-2.6.25-mm1/include/linux/cgroup.h
> @@ -200,11 +200,87 @@ struct cgroup_map_cb {
> */
>
> #define MAX_CFTYPE_NAME 64
> +
> +/* locking modes for control files.
> + *
> + * These determine what level of guarantee the file handler wishes
> + * cgroups to provide about the stability of control group entities
> + * for the duration of the handler callback.
> + *
> + * The minimum guarantee is that the subsystem state for this
> + * subsystem will not be freed (via a call to the subsystem's
> + * destroy() callback) until after the control file handler
> + * returns. This guarantee is provided by the fact that the open
> + * dentry for the control file keeps its parent (cgroup) dentry alive,
> + * which in turn keeps the cgroup object from being actually freed
> + * (although it can be moved into the removed state in the
> + * meantime). This is suitable for subsystems that completely control

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=6078&goto=30155#msg_30155
https://new-forum.openvz.org/index.php?t=post&reply_to=30155
https://new-forum.openvz.org/index.php

> + * their own synchronization.
> + *
> + * Other possible guarantees are given below.
> + *
> + * XXX_READ bits are used for a read operation on the control file,
> + * XXX_WRITE bits are used for a write operation on the control file
> + */

Vague handwaving: lockdep doesn't know anything about any of this.
Whereas if we were more conventional in using separate locks and
suitable lock types for each application, we would retain full lockdep
coverage.

> +/*
> + * CFT_LOCK_ATTACH_(READ|WRITE): This operation will not run
> + * concurrently with a task movement into or out of this cgroup.
> + */
> +#define CFT_LOCK_ATTACH_READ 1
> +#define CFT_LOCK_ATTACH_WRITE 2
> +#define CFT_LOCK_ATTACH (CFT_LOCK_ATTACH_READ | CFT_LOCK_ATTACH_WRITE)
> +
> +/*
> + * CFT_LOCK_RMDIR_(READ|WRITE): This operation will not run
> + * concurrently with the removal of the affected cgroup.
> + */
> +#define CFT_LOCK_RMDIR_READ 4
> +#define CFT_LOCK_RMDIR_WRITE 8
> +#define CFT_LOCK_RMDIR (CFT_LOCK_RMDIR_READ | CFT_LOCK_RMDIR_WRITE)
> +
> +/*
> + * CFT_LOCK_HIERARCHY_(READ|WRITE): This operation will not run
> + * concurrently with a cgroup creation or removal in this hierarchy,
> + * or a bind/move/unbind for this subsystem.
> + */
> +#define CFT_LOCK_HIERARCHY_READ 16
> +#define CFT_LOCK_HIERARCHY_WRITE 32
> +#define CFT_LOCK_HIERARCHY (CFT_LOCK_HIERARCHY_READ |
CFT_LOCK_HIERARCHY_WRITE)
> +
> +/*
> + * CFT_LOCK_CGL_(READ|WRITE): This operation is called with
> + * cgroup_lock() held; it will not run concurrently with any of the
> + * above operations in any cgroup/hierarchy. This should be considered
> + * to be the BKL of cgroups - it should be avoided if you can use
> + * finer-grained locking
> + */
> +#define CFT_LOCK_CGL_READ 64
> +#define CFT_LOCK_CGL_WRITE 128

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +#define CFT_LOCK_CGL (CFT_LOCK_CGL_READ | CFT_LOCK_CGL_WRITE)
> +
> +#define CFT_LOCK_FOR_READ (CFT_LOCK_ATTACH_READ |		\
> +			 CFT_LOCK_RMDIR_READ |		\
> +			 CFT_LOCK_HIERARCHY_READ |		\
> +			 CFT_LOCK_CGL_READ)
> +
> +#define CFT_LOCK_FOR_WRITE (CFT_LOCK_ATTACH_WRITE |	\
> +			 CFT_LOCK_RMDIR_WRITE |	\
> +			 CFT_LOCK_HIERARCHY_WRITE |	\
> +			 CFT_LOCK_CGL_WRITE)
> +
> struct cftype {
> 	/* By convention, the name should begin with the name of the
> 	 * subsystem, followed by a period */
> 	char name[MAX_CFTYPE_NAME];
> 	int private;
> +
> +	/*
> +	 * Determine what locks (if any) are held across calls to
> +	 * read_X/write_X callback. See lockmode definitions above
> +	 */
> +	int lockmode;
> +
> 	int (*open) (struct inode *inode, struct file *file);
> 	ssize_t (*read) (struct cgroup *cgrp, struct cftype *cft,
> 			 struct file *file,
> Index: cgroup-2.6.25-mm1/kernel/cgroup.c
> ===
> --- cgroup-2.6.25-mm1.orig/kernel/cgroup.c
> +++ cgroup-2.6.25-mm1/kernel/cgroup.c
> @@ -1327,38 +1327,65 @@ enum cgroup_filetype {
> 	FILE_RELEASE_AGENT,
> };
>
> -static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
> -				struct file *file,
> -				const char __user *userbuf,
> -				size_t nbytes, loff_t *unused_ppos)
> +
> +
> +/**
> + * cgroup_file_lock(). Helper for cgroup read/write methods.
> + * @cgrp: the cgroup being acted on
> + * @cft: the control file being written to or read from
> + * *write: true if the access is a write access.
> + *
> + * Takes any necessary locks as requested by the control file's

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + * 'lockmode' field; checks (after locking if necessary) that the
> + * control group is not in the process of being destroyed.
> + *
> + * Currently all the locking options are implemented in the same way,
> + * by taking cgroup_mutex. Future patches will add finer-grained
> + * locking.
> + *
> + * Calls to cgroup_file_lock() should always be paired with calls to
> + * cgroup_file_unlock(), even if cgroup_file_lock() returns an error.
> + */
> +
> +static int cgroup_file_lock(struct cgroup *cgrp, struct cftype *cft, int write)
> {
> -	char buffer[64];
> -	int retval = 0;
> -	char *end;
> +	int mask = write ? CFT_LOCK_FOR_WRITE : CFT_LOCK_FOR_READ;
> +	BUILD_BUG_ON(CFT_LOCK_FOR_READ != (CFT_LOCK_FOR_WRITE >> 1));
>
> -	if (!nbytes)
> -		return -EINVAL;
> -	if (nbytes >= sizeof(buffer))
> -		return -E2BIG;
> -	if (copy_from_user(buffer, userbuf, nbytes))
> -		return -EFAULT;
> +	if (cft->lockmode & mask)
> +		mutex_lock(&cgroup_mutex);
> +	if (cgroup_is_removed(cgrp))
> +		return -ENODEV;
> +	return 0;
> +}
> +
> +/**
> + * cgroup_file_unlock(): undoes the effect of cgroup_file_lock()
> + */
> +
> +static void cgroup_file_unlock(struct cgroup *cgrp, struct cftype *cft,
> +			 int write)
> +{
> +	int mask = write ? CFT_LOCK_FOR_WRITE : CFT_LOCK_FOR_READ;
> +	if (cft->lockmode & mask)
> +		mutex_unlock(&cgroup_mutex);
> +}
>
> -	buffer[nbytes] = 0; /* nul-terminate */
> -	strstrip(buffer);
> +static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
> +				const char *buffer)

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +{
> +	char *end;
> 	if (cft->write_u64) {
> 		u64 val = simple_strtoull(buffer, &end, 0);
> 		if (*end)
> 			return -EINVAL;
> -		retval = cft->write_u64(cgrp, cft, val);
> +		return cft->write_u64(cgrp, cft, val);
> 	} else {
> 		s64 val = simple_strtoll(buffer, &end, 0);
> 		if (*end)
> 			return -EINVAL;
> -		retval = cft->write_s64(cgrp, cft, val);
> +		return cft->write_s64(cgrp, cft, val);
> 	}
> -	if (!retval)
> -		retval = nbytes;
> -	return retval;
> }
>
> static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
> @@ -1426,47 +1453,82 @@ out1:
> 	return retval;
> }
>
> -static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
> +static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
> 						size_t nbytes, loff_t *ppos)
> {
> 	struct cftype *cft = __d_cft(file->f_dentry);
> 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
> -
> -	if (!cft || cgroup_is_removed(cgrp))
> -		return -ENODEV;
> -	if (cft->write)
> -		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
> -	if (cft->write_u64 || cft->write_s64)
> -		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
> -	if (cft->trigger) {
> -		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
> -		return ret ? ret : nbytes;
> +	ssize_t retval;
> +	char static_buffer[64];
> +	char *buffer = static_buffer;
> +	ssize_t max_bytes = sizeof(static_buffer) - 1;
> +	if (!cft->write && !cft->trigger) {
> +		if (!nbytes)
> +			return -EINVAL;

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +		if (nbytes >= max_bytes)
> +			return -E2BIG;
> +		if (nbytes >= sizeof(static_buffer)) {

afaict this can't happen - we would have already returned -E2BIG?

> +			/* +1 for nul-terminator */
> +			buffer = kmalloc(nbytes + 1, GFP_KERNEL);
> +			if (buffer == NULL)
> +				return -ENOMEM;
> +		}
> +		if (copy_from_user(buffer, userbuf, nbytes)) {
> +			retval = -EFAULT;
> +			goto out_free;
> +		}
> +		buffer[nbytes] = 0;	/* nul-terminate */
> +		strstrip(buffer);	/* strip -just- trailing whitespace */
> 	}
> -	return -EINVAL;
> -}

I'm trying to work out what protects static_buffer?

Why does it need to be static anyway? 64 bytes on-stack is OK.

> -static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
> -			 struct file *file,
> -			 char __user *buf, size_t nbytes,
> -			 loff_t *ppos)
> -{
> -	char tmp[64];
> -	u64 val = cft->read_u64(cgrp, cft);
> -	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
> +	retval = cgroup_file_lock(cgrp, cft, 1);
> +	if (retval)
> +		goto out_unlock;
>
> -	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
> +	if (cft->write)
> +		retval = cft->write(cgrp, cft, file, userbuf, nbytes, ppos);
> +	else if (cft->write_u64 || cft->write_s64)
> +		retval = cgroup_write_X64(cgrp, cft, buffer);
> +	else if (cft->trigger)
> +		retval = cft->trigger(cgrp, (unsigned int)cft->private);
> +	else
> +		retval = -EINVAL;
> +	if (retval == 0)
> +		retval = nbytes;

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + out_unlock:
> +	cgroup_file_unlock(cgrp, cft, 1);
> + out_free:
> +	if (buffer != static_buffer)
> +		kfree(buffer);
> +	return retval;
> }

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

