
Subject: [RFC/PATCH 0/8]: CGroup Files: Clean up locking and boilerplate
Posted by Paul Menage on Tue, 13 May 2008 06:37:07 GMT
View Forum Message <> Reply to Message

Most of the remaining cgroup control files that implement raw file
handlers (those where the userspace pointer/length/ppos are passed
through unchanged by cgroups) appear to do so in order to have some
control over the kind of locking that their handler uses. In
particular, some handlers need to call cgroup_lock() after copying
data from userspace and others don't. They also often dynamically
allocate memory when it's not strictly needed.

This patchset provides three main features:

1) A new "lockmode" field that indicates what kind of
stability/locking guarantees the handler needs from cgroups while it
is running. This can be used to reduce the dependency on
cgroup_lock(), and prevent its use as a BKL from becoming a contention
point as the number of cgroups subsystems grow.

An alternative to this would be to not have cgroups do the locking
internally, but to export similar functionality via functions such as

cgroup_lock_rmdir(struct cgroup*)
cgroup_lock_hierarchy(struct cgroup*)
cgroup_lock_attach(struct cgroup*)

that would perform any necessary locking, and recheck
!cgroup_removed(). This results in clearer code from the locking point
of view, as you can see within the function exactly what locking it
relies upon. The downside is that it makes the code more complex in
that you can't simply return from the middle of the function, but
instead need to save the return code and goto the point in the
function that releases the lock. E.g. the difference would be:

int some_handler(struct cgroup *cgrp, struct cftype *cft)
{
	if (!do_locked_operation1(cgrp))
		return -EINVAL;
	return do_locked_operation2(cgrp);
}
(and setting CFT_LOCK_RMDIR in the cftype descriptor)

versus

int some_handler(struct cgroup *cgrp, struct cftype *cft)
{
	int retval = cgroup_lock_rmdir(cgrp);

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6078&goto=30131#msg_30131
https://new-forum.openvz.org/index.php?t=post&reply_to=30131
https://new-forum.openvz.org/index.php

	if (retval)
		return retval;
	if (!do_locked_operation1(cgrp)) {
		retval = -EINVAL;
		goto out_unlock;
	}
	retval = do_locked_operation2(cgrp);
out_unlock:
	cgroup_unlock_rmdir(cgrp);
	return retval;
}
	
The latter style is common in the kernel, but my feeling is that the
former style is easier to code and to comprehend. I'm interested in
what others think.

2) A new "write_string" method which copies the user's data to kernel
space and ensures it's nul-terminated, performs any necessary
locking/checks, and invokes the handler with the kernelspace buffer

3) Conversion of several raw read/write handlers in cgroup, cpuset,
devcgroup and res_counter to use typed handlers and the new locking
specifications.

Signed-off-by: Paul Menage <menage@google.com>

--

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

