Subject: Re: [PATCH 3/14][TUN]: Introduce the tun_net structure.
Posted by Pavel Emelianov on Fri, 11 Apr 2008 15:22:51 GMT

View Forum Message <> Reply to Message

Paul E. McKenney wrote:

> On Fri, Apr 11, 2008 at 11:55:59AM +0400, Pavel Emelyanov wrote:
>> Paul E. McKenney wrote:

>>> On Thu, Apr 10, 2008 at 07:06:24PM +0400, Pavel Emelyanov wrote:
>>>> This is the first step in making tuntap devices work in net

>>>> namespaces. The structure mentioned is pointed by generic
>>>> net pointer with tun_net_id id, and tun driver fills one on

>>>> jts load. It will contain only the tun devices list.

>>>>

>>>> So declare this structure and introduce net init and exit hooks.
>>> OK, | have to ask... What prevents someone else from invoking
>>> net_generic() concurrently with a call to tun_exit_net(), potentially
>>> obtaining a pointer to the structure that tun_exit_net() is about
>>> to kfree()?

>> |t's the same as if the tun_net was directly pointed by the struct

>> net. Nobody can grant, that the pointer got by you from the struct
>> net is not going to become free, unless you provide this security
>> by yourself.

>

> So tun_net acquires some lock before calling net_generic(), and that
> same lock is held when calling tun_exit_net()? Or is there but a

No.

> single tun_net task, so that it will never call tun_net_exit()
> at the same time that it calls net_generic() for the tun_net pointer?

tun_net_exit is called only when a struct net is no longer referenced
and is going to be kfree-ed itself, so it's impossible (or BUGYy by its
own) that someone still has a pointer on this net.

Providing the struct net is alive (!), the net->gen array is alive (or

is scheduled for kfree after RCU grace period). Thus, if your code
holds the net and uses the net_generic() call, then it will get alive
net->gen array and alive tun_net pointer.

Next, what happens after net_generic() completes and leaves the RCU-read
section? Simple - the struct net is (should be) still referenced, so the
tun_net_exit cannot yet be called and thus the tun_net pointer obtained
earlier is alive. Unlike the (possibly) former instance of the net_generic
array, but nobody references this one in my code (and should not do so,
hm... | think I'll add this rule to the comments).

>> But if you call net_generic to get some pointer other than tun_net,

Page 1 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5915&goto=29378#msg_29378
https://new-forum.openvz.org/index.php?t=post&reply_to=29378
https://new-forum.openvz.org/index.php

>> then you're fine (due to RCU), providing you play the same rules with
>> the pointer you're getting.

>

> Agreed, RCU protects the net_generic structure, but not the structures
> pointed to by that structure.

They are protected by struct net reference counting.

>> Maybe I'm missing something in your question, can you provide some
>> testcase, that you suspect may cause an OOPS?
>

> Just trying to understand what prevents one task from calling
> net_generic() to pick up the tun_net pointer at the same time some other
> task calls tun_net_exit().

If this task dereferences a "held" struct net, then should be OK. If
this task does not, this will OOPs in any case.

Consider the struct net to look like
struct net {

;/.6id *ptrs[N];
}

and the net_generic to be just

static inline void net_generic(struct net *net, int id)

{
BUG_ON(id >= N):
return net->ptrs[id - 1];

}

That's the same to what | propose, except for the ptrs array is on the
RCU protected memory.

> Thanx, Pau

Thanks,
Pavel

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

