
Subject: [RFC][v2][patch 0/12][CFQ-cgroup]Yet another I/O bandwidth controlling
subsystem for CGroups based o
Posted by Satoshi UCHIDA on Thu, 03 Apr 2008 07:09:12 GMT
View Forum Message <> Reply to Message

This patchset modified a name of subsystem (from "cfq_cgroup" to "cfq")
and a checking in create function.

This patchset introduce "Yet Another" I/O bandwidth controlling
subsystem for cgroups based on CFQ (called 2 layer CFQ).

The idea of 2 layer CFQ is to build fairness control per group on the top of existing CFQ control.
We add a new data structure called CFQ meta-data on the top of
cfqd in order to control I/O bandwidth for cgroups.
CFQ meta-data control cfq_datas by service tree (rb-tree) and
CFQ algorithm when synchronous I/O.
An active cfqd controls queue for cfq by service tree.
Namely, the CFQ meta-data control traditional CFQ data.
the CFQ data runs conventionally.

 cfqmd cfqmd (cfqmd = cfq meta-data)
 | |
 cfqc -- cfqd ----- cfqd (cfqd = cfq data,
 | | cfqc = cfq cgroup data)
 cfqc --[cfqd]----- cfqd
 �$B",�(B
�$B!!!!!!!!!!�(Bconventional control.

This patchset is gainst 2.6.25-rc2-mm1.

Last week, we found a patchset from Vasily Tarasov (Open VZ) that
posted to LKML.
 [RFC][PATCH 0/9] cgroups: block: cfq: I/O bandwidth controlling subsystem for CGroups based
on CFQ
 http://lwn.net/Articles/274652/

Our subsystem and Vasily's one are similar on the point of modifying
the CFQ subsystem, but they are different on the point of the layer of
implementation. Vasily's subsystem add a new layer for cgroup between
cfqd and cfqq, but our subsystem add a new layer for cgroup on the top
of cfqd.

The different of implementation from OpenVZ's one are:
 * top layer algorithm is also based on service tree, and
 * top layer program is stored in the different file (block/cfq-cgroup.c).

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2508
https://new-forum.openvz.org/index.php?t=rview&th=5838&goto=29018#msg_29018
https://new-forum.openvz.org/index.php?t=post&reply_to=29018
https://new-forum.openvz.org/index.php

We hope to discuss not which is better implementation, but what is the
best way to implement I/O bandwidth control based on CFQ here.

Please give us your comments, questions and suggestions.

Finally, we introduce a usage of our implementation.

* Preparation for using 2 layer CFQ

 1. Adopt this patchset to kernel 2.6.25-rc2-mm1.

 2. Build kernel with CFQ-CGROUP option.

 3. Restart new kernel.

 4. Mount cfq_cgroup special device to device directory.
 ex.
 mkdir /dev/cgroup
 mount -t cgroup -o cfq cfq /dev/cgroup

* Usage of grouping control.
 - Create New group
 Make new directory under /dev/cgroup.
 For example, the following command genrerates a 'test1' group.
 mkdir /dev/cgroup/test1

 - Insert task to group
 Write process id(pid) on "tasks" entry in the corresponding group.
 For example, the following command sets task with pid 1100 into test1 group.
 echo 1100 > /dev/cgroup/test1/tasks
 Child tasks of this tasks is also inserted into test1 group.

 - Change I/O priority of group
 Write priority on "cfq.ioprio" entry in corresponding group.
 For example, the following command sets priority of rank 2 to 'test1' group.
 echo 2 > /dev/cgroup/test1/tasks
 I/O priority for cgroups takes the value from 0 to 7. It is same as
 existing per-task CFQ.

 - Change I/O priority of task
 Use existing "ionice" command.

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

* Example
 Two I/O load (dd command) runs some conditions.

 - When they are same group and same priority,

 program
 #!/bin/sh
 echo $$ > /dev/cgroup/tasks
 echo $$ > /dev/cgroup/test/tasks
 ionice -c 2 -n 3 dd if=/internal/data1 of=/dev/null bs=1M count=1K &
 ionice -c 2 -n 3 dd if=/internal/data2 of=/dev/null bs=1M count=1K &
 echo $$ > /dev/cgroup/test2/tasks
 echo $$ > /dev/cgroup/tasks

 result
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 27.7676 s, 38.7 MB/s
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 28.8482 s, 37.2 MB/s

 These tasks was fair, therefore they finished at similar time.

 - When they are same group and different priorities (0 and 7),

 program
 #!/bin/sh
 echo $$ > /dev/cgroup/tasks
 echo $$ > /dev/cgroup/test/tasks
 ionice -c 2 -n 0 dd if=/internal/data1 of=/dev/null bs=1M count=1K &
 ionice -c 2 -n 7 dd if=/internal/data2 of=/dev/null bs=1M count=1K &
 echo $$ > /dev/cgroup/test2/tasks
 echo $$ > /dev/cgroup/tasks

 result
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 18.8373 s, 57.0 MB/s
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 28.108 s, 38.2 MB/s

 The first task (copy data1) had high priority, therefore it finished at fast.

 - When they are different groups and different priorities (0 and 7),

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 program
 #!/bin/sh
 echo $$ > /dev/cgroup/tasks
 echo $$ > /dev/cgroup/test/tasks
 ionice -c 2 -n 0 dd if=/internal/data1 of=/dev/null bs=1M count=1K
 echo $$ > /dev/cgroup/test2/tasks
 ionice -c 2 -n 7 dd if=/internal/data2 of=/dev/null bs=1M count=1K
 echo $$ > /dev/cgroup/tasks

 result
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 28.1661 s, 38.1 MB/s
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 28.8486 s, 37.2 MB/s

 The first task (copy data1) had high priority, but they finished at similar time.
 Because their groups had same priority.

 - When they are different groups with different priorities (7 and 0)
 and same priority,

 program
 #!/bin/sh
 echo $$ > /dev/cgroup/tasks
 echo 7 > /dev/cgroup/test/cfq.ioprio
 echo $$ > /dev/cgroup/test/tasks
 ionice -c 2 -n 0 dd if=/internal/data1 of=/dev/null bs=1M count=1K >& test1.log &
 echo 0 > /dev/cgroup/test2/cfq.ioprio
 echo $$ > /dev/cgroup/test2/tasks
 ionice -c 2 -n 7 dd if=/internal/data2 of=/dev/null bs=1M count=1K >& test2.log &
 echo $$ > /dev/cgroup/tasks

 result
 === test1.log ===
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 27.3971 s, 39.2 MB/s
 === test2.log ===
 1024+0 records in
 1024+0 records out
 1073741824 bytes (1.1 GB) copied, 17.3837 s, 61.8 MB/s

 This first task (copy data1) had high priority, but they finished at late.
 Because its group had low priority.

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

=====
 Satoshi UHICDA
 NEC Corporation.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

