Subject: [RFC][PATCH 2/4] Provide a new procfs interface to set next upid nr(s)
Posted by Nadia Derbey on Fri, 28 Mar 2008 09:53:11 GMT

View Forum Message <> Reply to Message

[PATCH 02/04]

This patch proposes the procfs facilities needed to feed the id(s) for the
next task to be forked.

say n is the number of pids to be provided through procfs:

if an

echo "LONG<n> X0 X1 ... X<n-1>" > /proc/self/next_id

is issued, the next task to be forked will have its upid nrs set as follows
(say it is forked in a pid ns of level L):

level upid nr
[> X0
L-i------ > Xi

L-n+1->X<n-1>

Then, for levels L-n down to level 0, the pids will be left to the kernel
choice.

Signed-off-by: Nadia Derbey <Nadia.Derbey@bull.net>

include/linux/sysids.h | 27 ++++++++-
kernel/nextid.c | 146 ++++++++++++++++++++H++HH+H -

2 files changed, 153 insertions(+), 20 deletions(-)

Index: linux-2.6.25-rc3-mm1/include/linux/sysids.h

--- linux-2.6.25-rc3-mm1.orig/include/linux/sysids.h 2008-03-27 18:02:08.000000000 +0100
+++ linux-2.6.25-rc3-mm1/include/linux/sysids.h 2008-03-28 08:19:49.000000000 +0100
@@ -8,8+8,33 @@

#ifndef _LINUX_SYSIDS H

#define _LINUX_SYSIDS H

+

+#define NIDS_SMALL 32

+#define NIDS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(long)))
+

+/* access the ids "array" with this macro */

+#define ID_AT(pi, i) \

+ ((pi)->blocks](i) / NIDS_PER_BLOCK][(i) % NIDS_PER_BLOCK])

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2269
https://new-forum.openvz.org/index.php?t=rview&th=5773&goto=28784#msg_28784
https://new-forum.openvz.org/index.php?t=post&reply_to=28784
https://new-forum.openvz.org/index.php

+

+

+/*

+ * List of ids for the next object to be created. This presently applies to
+ * next process to be created.

+ * The next process to be created is associated to a set of upid nrs: one for
+ * each pid namespace level that process belongs to.

+ * upid nrs from level O up to level <npids - 1> will be automatically

+ * allocated.

+ * upid nr for level nids will be set to blocks[0][0]

+ * upid nr for level <nids + i> will be set to ID_AT(ids, i);

+ *

+ * If a single id is needed, nids is set to 1 and small_block][0] is set to
+ * that id.

+ */

struct sys_id {

- long id;

+ int nids;

+ long small_block[NIDS_SMALL];

+ int nblocks;

+ long *blocks|0];

3

extern ssize t get nextid(struct task_struct *, char *);
Index: linux-2.6.25-rc3-mm1l/kernel/nextid.c

--- linux-2.6.25-rc3-mm1.orig/kernel/nextid.c 2008-03-27 18:02:08.000000000 +0100
+++ linux-2.6.25-rc3-mm1l/kernel/nextid.c 2008-03-28 08:20:52.000000000 +0100
@@ -13,46 +13,148 @@

+static struct sys_id *id_blocks_alloc(int idsetsize)

H

+ struct sys_id *ids;

+ int nblocks;

+inti;

+

+ nblocks = (idsetsize + NIDS_PER_BLOCK - 1) / NIDS_PER_BLOCK;
+ BUG_ON(nblocks < 1);

+
+ ids = kmalloc(sizeof(*ids) + nblocks * sizeof(long *), GFP_KERNEL);
+ if (lids)

+ return NULL;

+ ids->nids = idsetsize;

+ ids->nblocks = nblocks;
+

+ if (idsetsize <= NIDS_SMALL)

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ ids->blocks[0] = ids->small_block;

+ else {

+ for (i = 0; i < nblocks; i++) {

+ long *b;

+ b =(void *)__get free_page(GFP_KERNEL);
+ if (Ib)

+ goto out_undo_partial _alloc;

+ ids->blocks][i] = b;

+}

+}

+ return ids;

+
+out_undo_partial_alloc:
+ while (--i >= 0)
+ free_page((unsigned long)ids->blocks]i]);
+
+ kfree(ids);
+return NULL;
+}
+
+static void id_blocks_free(struct sys_id *ids)
+
+if (ids == NULL)
+ return;
+
+ if (ids->blocks[0] = ids->small_block) {
+ inti;
+ for (i = 0; i < ids->nblocks; i++)
+ free_page((unsigned long)ids->blocksli]);
+}
+ ids->nids = 0;
+ return;
+}
+
ssize_t get_nextid(struct task_struct *task, char *buffer)
{
+ ssize_t count = 0;
struct sys_id *sid;
+ char *bufptr = buffer;
+inti;

sid = task->next_id;
- if (!sid)
+if (Isid || !sid->nids)
return snprintf(buffer, sizeof(buffer), "-1\n");

- return snprintf(buffer, sizeof(buffer), "%ld\n", sid->id);
+ for (i=0; i < sid->nids - 1; i++)

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ count += sprintf(&bufptr[count], "%lId ", ID_AT(sid, i));
+

+ count += sprintf(&bufptr[count], "%Id", ID_AT(sid, i));
+

+ return count;

}

-static int set_single_id(struct task_struct *task, char *buffer)
+static int fill_nextid_list(struct task_struct *task, int nids, char *buffer)
{
- struct sys_id *sid;
- long next_id;
+ char *token, *buff = buffer;
char *end;
+ struct sys_id *sid;
+ struct sys_id *old_list = task->next_id;
+inti;

- next_id = simple_strtol(buffer, &end, 0);

- if (end == buffer || (end && lisspace(*end)))
- return -EINVAL;

+ sid = id_blocks_alloc(nids);

+if (Isid)

+ return -ENOMEM,;

- sid = task->next _id;

- if (!sid) {

- sid = kzalloc(sizeof(*sid), GFP_KERNEL);

- if (Isid)

- return -ENOMEM;

- task->next_id = sid;

+i=0;

+ while ((token = strsep(&buff, " ")) '= NULL && i < nids) {
+ longid;

if ("*token)

goto out_free;

id = simple_strtol(token, &end, 0);

if (end == token || (*end && lisspace(*end)))
goto out_free;

ID_AT(sid, i) = id;

i++:

}

+if (i '= nids)

+ /* Not enough pids compared to npids */

+ goto out_free;
+

+ 4+ + + + ++++ o+

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+if (old_list) {
+ id_blocks_free(old_list);
+ kfree(old_list);

}

- sid->id = next_id;
+ task->next_id = sid;

return O;
+
+out_free:
+id_blocks_free(sid);
+return -EINVAL;
+}
+
+/*
+ * Parses a line with the following format:
+* <x> <id0> ... <idx-1>
+ * and sets <id0> to <idx-1> as the sequence of ids to be used for the next
+ * object to be created by the task.
+ * This applies to processes that need 1 id per namespace level.
+ * Any trailing character on the line is skipped.
+ */
+static int set_multiple_ids(struct task_struct *task, char *nb, char *buffer)
+
+ int nids;
+ char *end;
+
+ nids = simple_strtol(nb, &end, 0);
+if (*end)
+ return -EINVAL;
+
+if (nids <= 0)
+ return -EINVAL;
+
+ return fill_nextid_list(task, nids, buffer);

}

#define SINGLE_LONG "LONG"

/*
* Parses a line written to /proc/self/next_id.

- * this line has the following format:

+ * this line has one of the following format:
*LONG id --> a single id is specified

+ * LONG<x>idO ... id<x-1> --> a sequence of ids is specified
*/

int set_nextid(struct task_struct *task, char *buffer)

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

{
@@ -63,7 +165,13 @@ int set_nextid(struct task_struct *task,

return -EINVAL;

if (!strcmp(token, SINGLE_LONG))
- return set_single_id(task, out);
- else
- return -EINVAL;
+ return fill_nextid_list(task, 1, out);
+ else {
+ size_t sz = strlen(SINGLE_LONG);

+

+ if (Istrncmp(token, SINGLE_LONG, sz))

+ return set_multiple_ids(task, token + sz, out);
+ else

+ return -EINVAL,

+}

}

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

