
Subject: Re: [RFC][PATCH 0/4] Object creation with a specified id
Posted by serue on Mon, 17 Mar 2008 14:44:52 GMT
View Forum Message <> Reply to Message

Quoting Oren Laadan (orenl@cs.columbia.edu):
>
>
> Serge E. Hallyn wrote:
>> Quoting Oren Laadan (orenl@cs.columbia.edu):
>>>
>>> Nadia Derbey wrote:
>>>> Oren Laadan wrote:
>>>>>
>>>>> Nadia Derbey wrote:
>>>>>
>>>>>> Oren Laadan wrote:
>>>>>>
>>>>>>>
>>>>>>> Nadia.Derbey@bull.net wrote:
>>>>>>>
>>>>>>>> A couple of weeks ago, a discussion has started after Pierre's
>>>>>>>> proposal for
>>>>>>>> a new syscall to change an ipc id (see thread
>>>>>>>> http://lkml.org/lkml/2008/1/29/209).
>>>>>>>>
>>>>>>>>
>>>>>>>> Oren's suggestion was to force an object's id during its creation,
>>>>>>>> rather
>>>>>>>> than 1. create it, 2. change its id.
>>>>>>>>
>>>>>>>> So here is an implementation of what Oren has suggested.
>>>>>>>>
>>>>>>>> 2 new files are defined under /proc/self:
>>>>>>>> . next_ipcid --> next id to use for ipc object creation
>>>>>>>> . next_pids --> next upid nr(s) to use for next task to be forked
>>>>>>>> (see patch #2 for more details).
>>>>>>>
>>>>>>>
>>>>>>> Generally looks good. One meta-comment, though:
>>>>>>>
>>>>>>> I wonder why you use separate files for separate resources,
>>>>>>
>>>>>> That would be needed in a situation wheere we don't care about next,
>>>>>> say, ipc id to be created but we need a predefined pid. But I must
>>>>>> admit I don't see any pratical application to it.
>>>>>
>>>>> exactly; why set the next-ipc value so far in advance ? I think it's
>>>>> better (and less confusing) if we require that setting the next-id

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=5636&goto=28411#msg_28411
https://new-forum.openvz.org/index.php?t=post&reply_to=28411
https://new-forum.openvz.org/index.php

>>>>> value
>>>>> be done right before the respective syscall.
>>>> Ok, but this "requirement" should be widely agreed upon ;-)
>>> A discussion on the overall checkpoint/restart policy is certainly due
>>> (and increasingly noted recently).
>>>
>>>> What I mean here is that the solution with 1 file per "object type" can
>>>> easily be extended imho:
>>> I'm aiming at simplicity and minimal (but not restrictive) API for user
>>> space. I argue that we never really need more than one predetermined
>>> value
>>> at a time (eg see below), and the cost of setting such value is so small
>>> that there is no real benefit in setting more than one at a time (either
>>> via multiple files or via an array of values). If in fact you wanted more
>>> than one type at a time, you could still make it happen with a single
>>> file without adding many user-visible files in /proc/<pid>.
>>>
>>> So far, I can't think of any such identifier that we'd like to pre-set
>>> that does not fit into a "long" type;
>> As Nadia has mentioned, if we have checkpointed a container which has
>> another pid namespace underneath itself, then we will need to restart
>> some tasks with two predetermined pids. So we'll need two (or more)
>> longs for the tasks in deeper namespaces.
>
> I see. So more than a single "long" type is probably needed. I'd still
> prefer that the "scope" of a preset identifier through "next_id" should
> be the subsequent syscall;

> so if you need multiple values for the next
> syscall you use it, but you don't support leftovers for the next syscall
> to use.

Agreed.

> The typing system can be something like "long VAL" and then for
> array "long* VAL VAL VAL ...", for instance.
>
>>> simply because the kernel does not
>>> use such identifiers in the first place (pid, ipc, pty#, vc# .. etc). To
>>> be on the safe side, we can require that the format be "long VAL", just
>>> in case (and later you could have other formats).
>>>
>>> The only exception, perhaps, is if a TCP connection is rebuilt with a,
>>> say, connect() syscall, and some information needs to be "predetermined"
>>> so we'll need to extend the format. That can be done with another type
>>> eg. "tcp" or a separate file (per your view), _then_, not now.
>>> (As a side note, I don't suggest that this is how TCP will be restored).
>>>

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> In any event, the bottom line is that a single file, with a single
>>> value at a time (possibly annotated with a type), is the simplest, and
>>> isn't restrictive, for our purposes. Looking one step ahead, simplicity
>>> and minimal commitment to user space is important in trying to push this
>>> to the mainline kernel...
>>>
>>>> I don't know how the restart is supposed to work, but we can imagine
>>>> feeding all these files with all the object ids just before restart and
>>> Building on my own experience with zap I envision the restart operation
>>> of a given task occurring in the context of that task.
>> Could be, but not necessarily the case. Eric has mentioned using elf
>> files for restart, and that's one way to go, but whether one central
>
> I'm not familiar with the details of this.

Well he wasn't specific and I'm not sure what his details were, I just
pictured it the way crack and other userspace c/r systems have worked,
where the checkpoint creates and ELF which you execute to restart the
task(set).

>> restart task sets up all the children or the children set themselves up
>> is yet another design point we haven't decided. I would think that
>> with a centralized restart it would be easier to assure for instance
>> that shared anon pages would be properly set up and shared, but since
>> you advocate each-task-starts-itself I trust zap must handle that.
>
> The main reason I think a task should setup itself, is because most of
> the setup requires that new resources be allocated, and the kernel is
> already centered around this approach that a task allocates for itself,
> not for another task. For instance, if you need to restore a VMA, you
> simply call mmap(), a new file, you call open() etc.

Agreed, it does seem cleaner, and if we go with the "sys_create_id()"
approach then clearly that's where we're aiming.

> Shared anon pages are one example of shared resources that may be used
> by multiple processes. Zap's approach is to have the "first" user (in
> the sense of the first time the resource is seen during checkpoint) do
> the actual restore, and place it in a global table, and then subsequent
> tasks will find it in the table and "map" it into their view.

Makes sense.

> Decentralizing also allow multiple tasks to restart concurrently.

Yes, but we lose that if we force create_with_pid() to be implemented
by setting /proc/sys/whatever/pid_min and max :)

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Are we ready to start concrete discussion on the architecture for the
> checkpoint/restart ? (and if so .. time to change the subject line).

Good news on this topic - unofficial word is that the containers
mini-summit at OLS has been approved. They don't yet know whether
it will be monday or tuesday, but hopefully this is enough information
early enough for anyone needing to make/change travel plans.

thanks,
-serge

>>> (I assume this is
>>> how restart will work). Therefore, it makes much sense that before every
>>> syscall that requires a pre-determined resource identifier (eg. clone,
>>> ipc, pty allocation), the task will place the desired value in "next_id"
>>> (and that will only be meaningful during restart) and invoke the said
>>> syscall. Voila.
>>>
>>> Note that the restart will "rebuild" the container's state (and the task
>>> state) as it reads in the data from some source. It is likely that not
>>> all data will be available when the first said syscall is about to be
>>> invoked, so you may not be able to feed everything ahead of time.
>>>
>>>
>>>> let the process pick up the objects ids as it needs them.
>>>> Of course, this would require to enhance the files formats, as well as
>>>> the way things are stored in the task_struct.
>>>>
>>>> Hope what I'm saying is not too stupid ;-) ?
>>>>
>>>> Regards,
>>>> Nadia
>>>>
>>>>>>> and why you'd
>>>>>>> want to write multiple identifiers in one go;
>>>>>>
>>>>>> I used multiple identifiers only for the pid values: this is because
>>>>>> when a new pid value is allocated for a process that belongs to nested
>>>>>> namespaces, the lower level upid nr values are allocated in a single
>>>>>> shot. (see alloc_pid()).
>>>>>>
>>>>>>> it seems to complicate the
>>>>>>> code and interface with minimal gain.
>>>>>>> In practice, a process will only do either one or the other, so a
>>>>>>> single
>>>>>>> file is enough (e.g. "next_id").
>>>>>>> Also, writing a single value at a time followed by the syscall is
>>>>>>> enough;

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>>>>> it's definitely not a performance issue to have multiple calls.
>>>>>>> We assume the user/caller knows what she's doing, so no need to
>>>>>>> classify
>>>>>>> the identifier (that is, tell the kernel it's a pid, or an ipc id)
>>>>>>> ahead
>>>>>>> of time. The caller simply writes a value and then calls the relevant
>>>>>>> syscall, or otherwise the results may not be what she expected...
>>>>>>> If such context is expected to be required (although I don't see any
>>>>>>> at
>>>>>>> the moment), we can require that the user write "TYPE VALUE" pair to
>>>>>>> the "next_id" file.
>>>>>>
>>>>>> That's exactly what I wanted to avoid by creating 1 file per object.
>>>>>> Now, it's true that in a restart context where I guess that things
>>>>>> will be done synchronously, we could have a single next_id file.
>>>>>>
>>>>>>>> When one of these files (or both of them) is filled, a structure
>>>>>>>> pointed to
>>>>>>>> by the calling task struct is filled with these ids.
>>>>>>>>
>>>>>>>> Then, when the object is created, the id(s) present in that
>>>>>>>> structure are
>>>>>>>> used, instead of the default ones.
>>>>>>>>
>>>>>>>> The patches are against 2.6.25-rc3-mm1, in the following order:
>>>>>>>>
>>>>>>>> [PATCH 1/4] adds the procfs facility for next ipc to be created.
>>>>>>>> [PATCH 2/4] adds the procfs facility for next task to be forked.
>>>>>>>> [PATCH 3/4] makes use of the specified id (if any) to allocate the
>>>>>>>> new IPC
>>>>>>>> object (changes the ipc_addid() path).
>>>>>>>> [PATCH 4/4] uses the specified id(s) (if any) to set the upid nr(s)
>>>>>>>> for a newly
>>>>>>>> allocated process (changes the
>>>>>>>> alloc_pid()/alloc_pidmap() paths).
>>>>>>>>
>>>>>>>> Any comment and/or suggestions are welcome.
>>>>>>>>
>>>>>>>> Cc-ing Pavel and Sukadev, since they are the pid namespace authors.
>>>>>>>>
>>>>>>>> Regards,
>>>>>>>> Nadia
>>>>>>>>
>>>>>>>> --
>>>>>>>>
>>>>>>>> --
>>>>>>>
>>>>>>>

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>>>>>
>>>>>>
>>>>>> Regards,
>>>>>> Nadia
>>>>>
>>>>>
>>>>
>>> ___
>>> Containers mailing list
>>> Containers@lists.linux-foundation.org
>>> https://lists.linux-foundation.org/mailman/listinfo/containers

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

